前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Python-opencv实现红绿两色识别操作

Python-opencv实现红绿两色识别操作

作者头像
砸漏
发布2020-10-29 17:17:04
1.6K0
发布2020-10-29 17:17:04
举报
文章被收录于专栏:恩蓝脚本

1.颜色空间转换(RGB转HSV)

为了较准确的调红色和绿色的HSV,我使用cv2.createTrackbar()函数创建了六个滚动条

代码语言:javascript
复制
#创建HSV最低滚动条
cv2.createTrackbar('H_min','image',35,180,nothing)
cv2.createTrackbar('S_min','image',43,255,nothing)
cv2.createTrackbar('V_min','image',46,255,nothing)

#创建HSV最高滚动条
cv2.createTrackbar('H_max','image',0,180,nothing)
cv2.createTrackbar('S_max','image',255,255,nothing)
cv2.createTrackbar('V_max','image',255,255,nothing)

实际效果如图

2.识别颜色并画矩形框

颜色阈值已经确定了,这就可以进行颜色识别了。

为了让识别更稳定,在代码中加入自适应阈值。

th_img = cv2.adaptiveThreshold(mask,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV,5,2)

3.画矩形框

使用函数cv2.findContours()来检测物体轮框

再使用函数cv2.boundingRect()查找最小矩形框

使用函数cv2.rectangle()画出

代码语言:javascript
复制
contours_green,hierarchy = cv2.findContours(th_green,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
contours_red,hierarchy = cv2.findContours(th_red,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for red in contours_red:
 x_red,y_red,w_red,h_red = cv2.boundingRect(red)
 if w_red width|h_red height:
 cv2.rectangle(img,(x_red,y_red),((x_red+h_red),(y_red+w_red)),(0,255,0),1)
for red in contours_red:
 x_red,y_red,w_red,h_red = cv2.boundingRect(red)
 if w_red width|h_red height:
 cv2.rectangle(img,(x_red,y_red),((x_red+h_red),(y_red+w_red)),(0,255,0),1)

为了凸显出颜色的差距,我使用绿色的矩形框,画红色的物体,用红色的矩形框画绿色物体

以上这篇Python-opencv实现红绿两色识别操作就是小编分享给大家的全部内容了,希望能给大家一个参考。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-09-11 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档