前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tensorflow 20:搭网络,导出模型,运行模型的实例

tensorflow 20:搭网络,导出模型,运行模型的实例

作者头像
砸漏
发布2020-11-02 14:38:58
9120
发布2020-11-02 14:38:58
举报
文章被收录于专栏:恩蓝脚本

概述

以前自己都利用别人搭好的工程,修改过来用,很少把模型搭建、导出模型、加载模型运行走一遍,搞了一遍才知道这个事情也不是那么简单的。

搭建模型和导出模型

参考《TensorFlow固化模型》,导出固化的模型有两种方式.

方式1:导出pb图结构和ckpt文件,然后用 freeze_graph 工具冻结生成一个pb(包含结构和参数)

在我的代码里测试了生成pb图结构和ckpt文件,但是没接着往下走,感觉有点麻烦。我用的是第二种方法。

注意我这里只在最后保存了一次ckpt,实际应该在训练中每隔一段时间就保存一次的。

代码语言:javascript
复制
 saver = tf.train.Saver(max_to_keep=5)
 #tf.train.write_graph(session.graph_def, FLAGS.model_dir, "nn_model.pbtxt", as_text=True)
 
 with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())

 max_step = 2000
 for i in range(max_step):
 batch = mnist.train.next_batch(50)
 if i % 100 == 0:
 train_accuracy = accuracy.eval(feed_dict={
  x: batch[0], y_: batch[1], keep_prob: 1.0})
 print('step %d, training accuracy %g' % (i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
 
 print('test accuracy %g' % accuracy.eval(feed_dict={
 x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
 
 # 保存pb和ckpt
 print('save pb file and ckpt file')
 tf.train.write_graph(sess.graph_def, graph_location, "graph.pb",as_text=False)
 checkpoint_path = os.path.join(graph_location, "model.ckpt")
 saver.save(sess, checkpoint_path, global_step=max_step)

方式2:convert_variables_to_constants

我实际使用的就是这种方法。

看名字也知道,就是把变量转化为常量保存,这样就可以愉快的加载使用了。

注意这里需要指明保存的输出节点,我的输出节点为’out/fc2’(我猜测会根据输出节点的依赖推断哪些部分是训练用到的,推理时用不到)。关于输出节点的名字是有规律的,其中out是一个name_scope名字,fc2是op节点的名字。

代码语言:javascript
复制
 with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())

 max_step = 2000
 for i in range(max_step):
 batch = mnist.train.next_batch(50)
 if i % 100 == 0:
 train_accuracy = accuracy.eval(feed_dict={
  x: batch[0], y_: batch[1], keep_prob: 1.0})
 print('step %d, training accuracy %g' % (i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
 
 print('test accuracy %g' % accuracy.eval(feed_dict={
 x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

 print('save frozen file')
 pb_path = os.path.join(graph_location, 'frozen_graph.pb')
 print('pb_path:{}'.format(pb_path))

 # 固化模型
 output_graph_def = convert_variables_to_constants(sess, sess.graph_def, output_node_names=['out/fc2'])
 with tf.gfile.FastGFile(pb_path, mode='wb') as f:
 f.write(output_graph_def.SerializeToString())

上述代码会在训练后把训练好的计算图和参数保存到frozen_graph.pb文件。后续就可以用这个模型来测试图片了。

方式2的完整训练和保存模型代码

主要看main函数就行。另外注意deepnn函数最后节点的名字。

代码语言:javascript
复制
"""A deep MNIST classifier using convolutional layers.
See extensive documentation at
https://www.tensorflow.org/get_started/mnist/pros
"""
# Disable linter warnings to maintain consistency with tutorial.
# pylint: disable=invalid-name
# pylint: disable=g-bad-import-order
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import tempfile
import os
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.framework.graph_util import convert_variables_to_constants
import tensorflow as tf
FLAGS = None
def deepnn(x):
"""deepnn builds the graph for a deep net for classifying digits.
Args:
x: an input tensor with the dimensions (N_examples, 784), where 784 is the
number of pixels in a standard MNIST image.
Returns:
A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
equal to the logits of classifying the digit into one of 10 classes (the
digits 0-9). keep_prob is a scalar placeholder for the probability of
dropout.
"""
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer - maps one grayscale image to 32 feature maps.
with tf.name_scope('conv1'):
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# Pooling layer - downsamples by 2X.
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64.
with tf.name_scope('conv2'):
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# Second pooling layer.
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2)
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
with tf.name_scope('fc1'):
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of
# features.
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32, name='ratio')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the 1024 features to 10 classes, one for each digit
with tf.name_scope('out'):
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.add(tf.matmul(h_fc1_drop, W_fc2), b_fc2, name='fc2')
return y_conv, keep_prob
def conv2d(x, W):
"""conv2d returns a 2d convolution layer with full stride."""
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
"""max_pool_2x2 downsamples a feature map by 2X."""
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def main(_):
# Import data
mnist = input_data.read_data_sets(FLAGS.data_dir)
# Create the model
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x')
# Define loss and optimizer
y_ = tf.placeholder(tf.int64, [None])
# Build the graph for the deep net
y_conv, keep_prob = deepnn(x)
with tf.name_scope('loss'):
cross_entropy = tf.losses.sparse_softmax_cross_entropy(
labels=y_, logits=y_conv)
cross_entropy = tf.reduce_mean(cross_entropy)
with tf.name_scope('adam_optimizer'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_conv, 1), y_)
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
graph_location = './model'
print('Saving graph to: %s' % graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
saver = tf.train.Saver(max_to_keep=5)
#tf.train.write_graph(session.graph_def, FLAGS.model_dir, "nn_model.pbtxt", as_text=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
max_step = 2000
for i in range(max_step):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch[0], y_: batch[1], keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print('test accuracy %g' % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
# save pb file and ckpt file
#print('save pb file and ckpt file')
#tf.train.write_graph(sess.graph_def, graph_location, "graph.pb", as_text=False)
#checkpoint_path = os.path.join(graph_location, "model.ckpt")
#saver.save(sess, checkpoint_path, global_step=max_step)
print('save frozen file')
pb_path = os.path.join(graph_location, 'frozen_graph.pb')
print('pb_path:{}'.format(pb_path))
output_graph_def = convert_variables_to_constants(sess, sess.graph_def, output_node_names=['out/fc2'])
with tf.gfile.FastGFile(pb_path, mode='wb') as f:
f.write(output_graph_def.SerializeToString())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str,
default='./data',
help='Directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

加载模型进行推理

上一节已经训练并导出了frozen_graph.pb。

这一节把它运行起来。

加载模型

下方的代码用来加载模型。推理时计算图里共两个placeholder需要填充数据,一个是图片(这不废话吗),一个是drouout_ratio,drouout_ratio用一个常量作为输入,后续就只需要输入图片了。

代码语言:javascript
复制
graph_location = './model'
pb_path = os.path.join(graph_location, 'frozen_graph.pb')
print('pb_path:{}'.format(pb_path))
newInput_X = tf.placeholder(tf.float32, [None, 784], name="X")
drouout_ratio = tf.constant(1., name="drouout")
with open(pb_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
output = tf.import_graph_def(graph_def,
input_map={'input/x:0': newInput_X, 'dropout/ratio:0':drouout_ratio},
return_elements=['out/fc2:0'])

input_map参数并不是必须的。如果不用input_map,可以在run之前用tf.get_default_graph().get_tensor_by_name获取tensor的句柄。但是我觉得这种方法不是很友好,我这里没用这种方法。

注意input_map里的tensor名字是和搭计算图时的name_scope和op名字有关的,而且后面要补一个‘:0′(这点我还没细究)。

同时要注意,newInput_X的形状是[None, 784],第一维是batch大小,推理时和训练要一致。

(我用的是mnist图片,训练时每个bacth的形状是[batchsize, 784],每个图片是28×28)

运行模型

我是一张张图片单独测试的,运行模型之前先把图片变为[1, 784],以符合newInput_X的维数。

代码语言:javascript
复制
with tf.Session( ) as sess:
file_list = os.listdir(test_image_dir)
# 遍历文件
for file in file_list:
full_path = os.path.join(test_image_dir, file)
print('full_path:{}'.format(full_path))
# 只要黑白的,大小控制在(28,28)
img = cv2.imread(full_path, cv2.IMREAD_GRAYSCALE )
res_img = cv2.resize(img,(28,28),interpolation=cv2.INTER_CUBIC) 
# 变成长784的一维数据
new_img = res_img.reshape((784))
# 增加一个维度,变为 [1, 784]
image_np_expanded = np.expand_dims(new_img, axis=0)
image_np_expanded.astype('float32') # 类型也要满足要求
print('image_np_expanded shape:{}'.format(image_np_expanded.shape))
# 注意注意,我要调用模型了
result = sess.run(output, feed_dict={newInput_X: image_np_expanded})
# 出来的结果去掉没用的维度
result = np.squeeze(result)
print('result:{}'.format(result))
#print('result:{}'.format(sess.run(output, feed_dict={newInput_X: image_np_expanded})))
# 输出结果是长度为10(对应0-9)的一维数据,最大值的下标就是预测的数字
print('result:{}'.format( (np.where(result==np.max(result)))[0][0] ))

注意模型的输出是一个长度为10的一维数组,也就是计算图里全连接的输出。这里没有softmax,只要取最大值的下标即可得到结果。

输出结果:

代码语言:javascript
复制
full_path:./test_images/97_7.jpg
image_np_expanded shape:(1, 784)
result:[-1340.37145996 -283.72436523 1305.03320312 437.6053772 -413.69961548
-1218.08166504 -1004.83807373 1953.33984375 42.00457001 -504.43829346]
result:7
full_path:./test_images/98_6.jpg
image_np_expanded shape:(1, 784)
result:[ 567.4041748 -550.20904541 623.83496094 -1152.56884766 -217.92695618
1033.45239258 2496.44750977 -1139.23620605 -5.64091825 -615.28491211]
result:6
full_path:./test_images/99_9.jpg
image_np_expanded shape:(1, 784)
result:[ -532.26409912 -1429.47277832 -368.58096313 505.82876587 358.42163086
-317.48199463 -1108.6829834 1198.08752441 289.12286377 3083.52539062]
result:9

加载模型进行推理的完整代码

代码语言:javascript
复制
import sys
import os
import cv2
import numpy as np
import tensorflow as tf
test_image_dir = './test_images/'
graph_location = './model'
pb_path = os.path.join(graph_location, 'frozen_graph.pb')
print('pb_path:{}'.format(pb_path))
newInput_X = tf.placeholder(tf.float32, [None, 784], name="X")
drouout_ratio = tf.constant(1., name="drouout")
with open(pb_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
#output = tf.import_graph_def(graph_def)
output = tf.import_graph_def(graph_def,
input_map={'input/x:0': newInput_X, 'dropout/ratio:0':drouout_ratio},
return_elements=['out/fc2:0'])
with tf.Session( ) as sess:
file_list = os.listdir(test_image_dir)
# 遍历文件
for file in file_list:
full_path = os.path.join(test_image_dir, file)
print('full_path:{}'.format(full_path))
# 只要黑白的,大小控制在(28,28)
img = cv2.imread(full_path, cv2.IMREAD_GRAYSCALE )
res_img = cv2.resize(img,(28,28),interpolation=cv2.INTER_CUBIC) 
# 变成长784的一维数据
new_img = res_img.reshape((784))
# 增加一个维度,变为 [1, 784]
image_np_expanded = np.expand_dims(new_img, axis=0)
image_np_expanded.astype('float32') # 类型也要满足要求
print('image_np_expanded shape:{}'.format(image_np_expanded.shape))
# 注意注意,我要调用模型了
result = sess.run(output, feed_dict={newInput_X: image_np_expanded})
# 出来的结果去掉没用的维度
result = np.squeeze(result)
print('result:{}'.format(result))
#print('result:{}'.format(sess.run(output, feed_dict={newInput_X: image_np_expanded})))
# 输出结果是长度为10(对应0-9)的一维数据,最大值的下标就是预测的数字
print('result:{}'.format( (np.where(result==np.max(result)))[0][0] ))

以上这篇tensorflow 20:搭网络,导出模型,运行模型的实例就是小编分享给大家的全部内容了,希望能给大家一个参考。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-09-11 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档