前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >python实现低通滤波器代码

python实现低通滤波器代码

作者头像
砸漏
发布2020-11-05 14:59:54
1.9K0
发布2020-11-05 14:59:54
举报
文章被收录于专栏:恩蓝脚本

低通滤波器实验代码,这是参考别人网上的代码,所以自己也分享一下,共同进步

代码语言:javascript
复制
# -*- coding: utf-8 -*-

import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt


def butter_lowpass(cutoff, fs, order=5):
 nyq = 0.5 * fs
 normal_cutoff = cutoff / nyq
 b, a = butter(order, normal_cutoff, btype='low', analog=False)
 return b, a


def butter_lowpass_filter(data, cutoff, fs, order=5):
 b, a = butter_lowpass(cutoff, fs, order=order)
 y = lfilter(b, a, data)
 return y # Filter requirements.


order = 6
fs = 30.0 # sample rate, Hz
cutoff = 3.667 # desired cutoff frequency of the filter, Hz # Get the filter coefficients so we can check its frequency response.
b, a = butter_lowpass(cutoff, fs, order) # Plot the frequency response.
w, h = freqz(b, a, worN=800)
plt.subplot(2, 1, 1)
plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b')
plt.plot(cutoff, 0.5*np.sqrt(2), 'ko')
plt.axvline(cutoff, color='k')
plt.xlim(0, 0.5*fs)
plt.title("Lowpass Filter Frequency Response")
plt.xlabel('Frequency [Hz]')
plt.grid() # Demonstrate the use of the filter. # First make some data to be filtered.
T = 5.0 # seconds
n = int(T * fs) # total number of samples
t = np.linspace(0, T, n, endpoint=False) # "Noisy" data. We want to recover the 1.2 Hz signal from this.
data = np.sin(1.2*2*np.pi*t) + 1.5*np.cos(9*2*np.pi*t) + 0.5*np.sin(12.0*2*np.pi*t) # Filter the data, and plot both the original and filtered signals.
y = butter_lowpass_filter(data, cutoff, fs, order)
plt.subplot(2, 1, 2)
plt.plot(t, data, 'b-', label='data')
plt.plot(t, y, 'g-', linewidth=2, label='filtered data')
plt.xlabel('Time [sec]')
plt.grid()
plt.legend()
plt.subplots_adjust(hspace=0.35)
plt.show()

实际代码,没有整理,可以读取txt文本文件,然后进行低通滤波,并将滤波前后的波形和FFT变换都显示出来

代码语言:javascript
复制
# -*- coding: utf-8 -*-
import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt
import os
def butter_lowpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y # Filter requirements.
order = 5
fs = 100000.0 # sample rate, Hz
cutoff = 1000 # desired cutoff frequency of the filter, Hz # Get the filter coefficients so we can check its frequency response.
# b, a = butter_lowpass(cutoff, fs, order) # Plot the frequency response.
# w, h = freqz(b, a, worN=1000)
# plt.subplot(3, 1, 1)
# plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b')
# plt.plot(cutoff, 0.5*np.sqrt(2), 'ko')
# plt.axvline(cutoff, color='k')
# plt.xlim(0, 1000)
# plt.title("Lowpass Filter Frequency Response")
# plt.xlabel('Frequency [Hz]')
# plt.grid() # Demonstrate the use of the filter. # First make some data to be filtered.
# T = 5.0 # seconds
# n = int(T * fs) # total number of samples
# t = np.linspace(0, T, n, endpoint=False) # "Noisy" data. We want to recover the 1.2 Hz signal from this.
# # data = np.sin(1.2*2*np.pi*t) + 1.5*np.cos(9*2*np.pi*t) + 0.5*np.sin(12.0*2*np.pi*t) # Filter the data, and plot both the original and filtered signals.
path = "*****"
for file in os.listdir(path):
if file.endswith("txt"):
data=[]
filePath = os.path.join(path, file)
with open(filePath, 'r') as f:
lines = f.readlines()[8:]
for line in lines:
# print(line)
data.append(float(line)*100)
# print(len(data))
t1=[i*10 for i in range(len(data))]
plt.subplot(231)
# plt.plot(range(len(data)), data)
plt.plot(t1, data, linewidth=2,label='original data')
# plt.title('ori wave', fontsize=10, color='#F08080')
plt.xlabel('Time [us]')
plt.legend()
# filter_data = data[30000:35000]
# filter_data=data[60000:80000]
# filter_data2=data[60000:80000]
# filter_data = data[80000:100000]
# filter_data = data[100000:120000]
filter_data = data[120000:140000]
filter_data2=filter_data
t2=[i*10 for i in range(len(filter_data))]
plt.subplot(232)
plt.plot(t2, filter_data, linewidth=2,label='cut off wave before filter')
plt.xlabel('Time [us]')
plt.legend()
# plt.title('cut off wave', fontsize=10, color='#F08080')
# filter_data=zip(range(1,len(data),int(fs/len(data))),data)
# print(filter_data)
n1 = len(filter_data)
Yamp1 = abs(np.fft.fft(filter_data) / (n1 / 2))
Yamp1 = Yamp1[range(len(Yamp1) // 2)]
# x_axis=range(0,n//2,int(fs/len
# 计算最大赋值点频率
max1 = np.max(Yamp1)
max1_index = np.where(Yamp1 == max1)
if (len(max1_index[0]) == 2):
print((max1_index[0][0] )* fs / n1, (max1_index[0][1]) * fs / n1)
else:
Y_second = Yamp1
Y_second = np.sort(Y_second)
print(np.where(Yamp1 == max1)[0] * fs / n1,
(np.where(Yamp1 == Y_second[-2])[0]) * fs / n1)
N1 = len(Yamp1)
# print(N1)
x_axis1 = [i * fs / n1 for i in range(N1)]
plt.subplot(233)
plt.plot(x_axis1[:300], Yamp1[:300], linewidth=2,label='FFT data')
plt.xlabel('Frequence [Hz]')
# plt.title('FFT', fontsize=10, color='#F08080')
plt.legend()
# plt.savefig(filePath.replace("txt", "png"))
# plt.close()
# plt.show()
Y = butter_lowpass_filter(filter_data2, cutoff, fs, order)
n3 = len(Y)
t3 = [i * 10 for i in range(n3)]
plt.subplot(235)
plt.plot(t3, Y, linewidth=2, label='cut off wave after filter')
plt.xlabel('Time [us]')
plt.legend()
Yamp2 = abs(np.fft.fft(Y) / (n3 / 2))
Yamp2 = Yamp2[range(len(Yamp2) // 2)]
# x_axis = range(0, n // 2, int(fs / len(Yamp)))
max2 = np.max(Yamp2)
max2_index = np.where(Yamp2 == max2)
if (len(max2_index[0]) == 2):
print(max2, max2_index[0][0] * fs / n3, max2_index[0][1] * fs / n3)
else:
Y_second2 = Yamp2
Y_second2 = np.sort(Y_second2)
print((np.where(Yamp2 == max2)[0]) * fs / n3,
(np.where(Yamp2 == Y_second2[-2])[0]) * fs / n3)
N2=len(Yamp2)
# print(N2)
x_axis2 = [i * fs / n3 for i in range(N2)]
plt.subplot(236)
plt.plot(x_axis2[:300], Yamp2[:300],linewidth=2, label='FFT data after filter')
plt.xlabel('Frequence [Hz]')
# plt.title('FFT after low_filter', fontsize=10, color='#F08080')
plt.legend()
# plt.show()
plt.savefig(filePath.replace("txt", "png"))
plt.close()
print('*'*50)
# plt.subplot(3, 1, 2)
# plt.plot(range(len(data)), data, 'b-', linewidth=2,label='original data')
# plt.grid()
# plt.legend()
#
# plt.subplot(3, 1, 3)
# plt.plot(range(len(y)), y, 'g-', linewidth=2, label='filtered data')
# plt.xlabel('Time')
# plt.grid()
# plt.legend()
# plt.subplots_adjust(hspace=0.35)
# plt.show()
'''
# Y_fft = Y[60000:80000]
Y_fft = Y
# Y_fft = Y[80000:100000]
# Y_fft = Y[100000:120000]
# Y_fft = Y[120000:140000]
n = len(Y_fft)
Yamp = np.fft.fft(Y_fft)/(n/2)
Yamp = Yamp[range(len(Yamp)//2)]
max = np.max(Yamp)
# print(max, np.where(Yamp == max))
Y_second = Yamp
Y_second=np.sort(Y_second)
print(float(np.where(Yamp == max)[0])* fs / len(Yamp),float(np.where(Yamp==Y_second[-2])[0])* fs / len(Yamp))
# print(float(np.where(Yamp == max)[0]) * fs / len(Yamp))
'''

补充拓展:浅谈opencv的理想低通滤波器和巴特沃斯低通滤波器

低通滤波器

1.理想的低通滤波器

其中,D0表示通带的半径。D(u,v)的计算方式也就是两点间的距离,很简单就能得到。

使用低通滤波器所得到的结果如下所示。低通滤波器滤除了高频成分,所以使得图像模糊。由于理想低通滤波器的过度特性过于急峻,所以会产生了振铃现象。

2.巴特沃斯低通滤波器

同样的,D0表示通带的半径,n表示的是巴特沃斯滤波器的次数。随着次数的增加,振铃现象会越来越明显。

代码语言:javascript
复制
void ideal_Low_Pass_Filter(Mat src){
Mat img;
cvtColor(src, img, CV_BGR2GRAY);
imshow("img",img);
//调整图像加速傅里叶变换
int M = getOptimalDFTSize(img.rows);
int N = getOptimalDFTSize(img.cols);
Mat padded;
copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
//记录傅里叶变换的实部和虚部
Mat planes[] = { Mat_<float (padded), Mat::zeros(padded.size(), CV_32F) };
Mat complexImg;
merge(planes, 2, complexImg);
//进行傅里叶变换
dft(complexImg, complexImg);
//获取图像
Mat mag = complexImg;
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));//这里为什么&上-2具体查看opencv文档
//其实是为了把行和列变成偶数 -2的二进制是11111111.......10 最后一位是0
//获取中心点坐标
int cx = mag.cols / 2;
int cy = mag.rows / 2;
//调整频域
Mat tmp;
Mat q0(mag, Rect(0, 0, cx, cy));
Mat q1(mag, Rect(cx, 0, cx, cy));
Mat q2(mag, Rect(0, cy, cx, cy));
Mat q3(mag, Rect(cx, cy, cx, cy));
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
//Do为自己设定的阀值具体看公式
double D0 = 60;
//处理按公式保留中心部分
for (int y = 0; y < mag.rows; y++){
double* data = mag.ptr<double (y);
for (int x = 0; x < mag.cols; x++){
double d = sqrt(pow((y - cy),2) + pow((x - cx),2));
if (d <= D0){
}
else{
data[x] = 0;
}
}
}
//再调整频域
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
//逆变换
Mat invDFT, invDFTcvt;
idft(mag, invDFT, DFT_SCALE | DFT_REAL_OUTPUT); // Applying IDFT
invDFT.convertTo(invDFTcvt, CV_8U);
imshow("理想低通滤波器", invDFTcvt);
}
void Butterworth_Low_Paass_Filter(Mat src){
int n = 1;//表示巴特沃斯滤波器的次数
//H = 1 / (1+(D/D0)^2n)
Mat img;
cvtColor(src, img, CV_BGR2GRAY);
imshow("img", img);
//调整图像加速傅里叶变换
int M = getOptimalDFTSize(img.rows);
int N = getOptimalDFTSize(img.cols);
Mat padded;
copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = { Mat_<float (padded), Mat::zeros(padded.size(), CV_32F) };
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg);
Mat mag = complexImg;
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
int cx = mag.cols / 2;
int cy = mag.rows / 2;
Mat tmp;
Mat q0(mag, Rect(0, 0, cx, cy));
Mat q1(mag, Rect(cx, 0, cx, cy));
Mat q2(mag, Rect(0, cy, cx, cy));
Mat q3(mag, Rect(cx, cy, cx, cy));
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
double D0 = 100;
for (int y = 0; y < mag.rows; y++){
double* data = mag.ptr<double (y);
for (int x = 0; x < mag.cols; x++){
//cout << data[x] << endl;
double d = sqrt(pow((y - cy), 2) + pow((x - cx), 2));
//cout << d << endl;
double h = 1.0 / (1 + pow(d / D0, 2 * n));
if (h <= 0.5){
data[x] = 0;
}
else{
//data[x] = data[x]*0.5;
//cout << h << endl;
}
//cout << data[x] << endl;
}
}
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
//逆变换
Mat invDFT, invDFTcvt;
idft(complexImg, invDFT, DFT_SCALE | DFT_REAL_OUTPUT); // Applying IDFT
invDFT.convertTo(invDFTcvt, CV_8U);
imshow("巴特沃斯低通滤波器", invDFTcvt);
}

以上这篇python实现低通滤波器代码就是小编分享给大家的全部内容了,希望能给大家一个参考。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-09-11 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档