前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Android实现CoverFlow效果控件的实例代码

Android实现CoverFlow效果控件的实例代码

作者头像
砸漏
发布2020-11-05 15:25:32
7430
发布2020-11-05 15:25:32
举报
文章被收录于专栏:恩蓝脚本恩蓝脚本

计算概率分布的相关参数时,一般使用 scipy 包,常用的函数包括以下几个:

pdf:连续随机分布的概率密度函数

pmf:离散随机分布的概率密度函数

cdf:累计分布函数

百分位函数(累计分布函数的逆函数)

生存函数的逆函数(1 – cdf 的逆函数)

函数里面不仅能跟一个数据,还能跟一个数组。下面用正态分布举例说明:

代码语言:javascript
复制
    import scipy.stats as st

    st.norm.cdf(0) # 标准正态分布在 0 处的累计分布概率值
0.5

    st.norm.cdf([-1, 0, 1])# 标准正态分布分别在 -1, 0, 1 处的累计分布概率值
array([0.15865525, 0.5, 0.84134475])

    st.norm.pdf(0) # 标准正态分布在 0 处的概率密度值
0.3989422804014327

    st.norm.ppf(0.975)# 标准正态分布在 0.975 处的逆函数值
1.959963984540054

    st.norm.lsf(0.975)# 标准正态分布在 0.025 处的生存函数的逆函数值
1.959963984540054

对于非标准正态分布,通过更改参数 loc 与 scale 来改变均值与标准差:

代码语言:javascript
复制
    st.norm.cdf(0, loc=2, scale=1) # 均值为 2,标准差为 1 的正态分布在 0 处的累计分布概率值
0.022750131948179195

对于其他随机分布,可能更改的参数不一样,具体需要查官方文档。下面我们举一些常用分布的例子:

代码语言:javascript
复制
    st.binom.pmf(4, n=100, p=0.05) # 参数值 n=100, p=0.05 的二项分布在 4 处的概率密度值
0.17814264156968956

    st.geom.pmf(4, p=0.05) # 参数值 p=0.05 的几何分布在 4 处的概率密度值
0.04286875

    st.poisson.pmf(2, mu=3) # 参数值 mu=3 的泊松分布在 2 处的概率密度值
0.22404180765538775

    st.chi2.ppf(0.95, df=10) # 自由度为 10 的卡方分布在 0.95 处的逆函数值
18.307038053275146

    st.t.ppf(0.975, df=10) # 自由度为 10 的 t 分布在 0.975 处的逆函数值
2.2281388519649385

    st.f.ppf(0.95, dfn=2, dfd=12) # 自由度为 2, 12 的 F 分布在 0.95 处的逆函数值
3.8852938346523933

补充拓展:给定概率密度,生成随机数 python实现

实现的方法可以不止一种:

rejection sampling invert the cdf Metropolis Algorithm (MCMC)

本篇介绍根据累积概率分布函数的逆函数(2:invert the CDF)生成的方法。

自己的理解不一定正确,有错误望指正。

目标:

已知 y=pdf(x),现想由给定的pdf, 生成对应分布的x

PDF是概率分布函数,对其积分或者求和可以得到CDF(累积概率分布函数),PDF积分或求和的结果始终为1

步骤(具体解释后面会说):

1、根据pdf得到cdf

2、由cdf得到inverse of the cdf

3、对于给定的均匀分布[0,1),带入inverse cdf,得到的结果即是我们需要的x

求cdf逆函数的具体方法:

对于上面的第二步,可以分成两类:

1、当CDF的逆函数好求时,直接根据公式求取,

2、反之当CDF的逆函数不好求时,用数值模拟方法

自己的理解:为什么需要根据cdf的逆去获得x?

原因一:

因为cdf是单调函数因此一定存在逆函数(cdf是s型函数,而pdf则不一定,例如正态分布,不单调,对于给定的y,可能存在两个对应的x,就不可逆)

原因二:

这仅是我自己的直观理解,根据下图所示(左上为pdf,右上为cdf)

由步骤3可知,我们首先生成[0,1)的均匀随机数,此随机数作为cdf的y,去映射到cdf的x(若用cdf的逆函数表示则是由x映射到y),可以参考上图的右上,既然cdf的y是均匀随机的,那么对于cdf中同样范围的x,斜率大的部分将会有更大的机会被映射,因为对应的y范围更大(而y是随即均匀分布的),那么,cdf的斜率也就等同于pdf的值,这正好符合若x的pdf较大,那么有更大的概率出现(即重复很多次后,该x会出现的次数最多)

代码实现——方法一,公式法

代码语言:javascript
复制
import numpy as np
import math
import random
import matplotlib.pyplot as plt
import collections

count_dict = dict()
bin_count = 20

def inverseCDF():
 """
 return the x value in PDF
 """
 uniform_random = random.random()
 return inverse_cdf(uniform_random)
 

def pdf(x):
 return 2 * x
 
# cdf = x^2, 其逆函数很好求,因此直接用公式法
def inverse_cdf(x):
 return math.sqrt(x)


def draw_pdf(D):
	global bin_count
 D = collections.OrderedDict(sorted(D.items()))
 plt.bar(range(len(D)), list(D.values()), align='center')
 # 因为映射bin的时候采用的floor操作,因此加上0.5
 value_list = [(key + 0.5) / bin_count for key in D.keys()]
 plt.xticks(range(len(D)), value_list)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()

for i in range(90000):
 x = inverseCDF()
 # 用bin去映射,否则不好操作
 bin = math.floor(x * bin_count) # type(bin): int
 count_dict[bin] = count_dict.get(bin, 0) + 1

draw_pdf(count_dict)

结果:

代码实现——方法二,数值法

数值模拟cdf的关键是创建lookup table,

table的size越大则结果越真实(即区间划分的个数)

代码语言:javascript
复制
import numpy as np
import math
import random
import matplotlib.pyplot as plt
import collections

lookup_table_size = 40
CDFlookup_table = np.zeros((lookup_table_size))

count_dict = dict()
bin_count = 20

def inverse_cdf_numerically(y):
 global lookup_table_size
 global CDFlookup_table
 value = 0.0
 for i in range(lookup_table_size):
  x = i * 1.0 / (lookup_table_size - 1)
  value += pdf2(x)
  CDFlookup_table[i] = value
 CDFlookup_table /= value # normalize the cdf

 if y < CDFlookup_table[0]: 
  t = y / CDFlookup_table[0]
  return t / lookup_table_size
 index = -1
 for j in range(lookup_table_size):
  if CDFlookup_table[j]  = y:
   index = j
   break
 # linear interpolation
 t = (y - CDFlookup_table[index - 1]) / \
  (CDFlookup_table[index] - CDFlookup_table[index - 1])
 fractional_index = index + t # 因为index从0开始,所以不是 (index-1)+t
 return fractional_index / lookup_table_size


def inverseCDF():
 """
 return the x value in PDF
 """
 uniform_random = random.random()
 return inverse_cdf_numerically(uniform_random)


def pdf2(x):
 return (x * x * x - 10.0 * x * x + 5.0 * x + 11.0) / (10.417)

def draw_pdf(D):
 global bin_count
 D = collections.OrderedDict(sorted(D.items()))
 plt.bar(range(len(D)), list(D.values()), align='center')
 value_list = [(key + 0.5) / bin_count for key in D.keys()]
 plt.xticks(range(len(D)), value_list)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()


for i in range(90000):
 x = inverseCDF()
 bin = math.floor(x * bin_count) # type(bin): int
 count_dict[bin] = count_dict.get(bin, 0) + 1

draw_pdf(count_dict)

真实函数与模拟结果

扩展:生成伯努利、正太分布

代码语言:javascript
复制
import numpy as np
import matplotlib.pyplot as plt
"""
reference:
Counting Bits & The Normal Distribution
"""


def plot_bar_x():
 # this is for plotting purpose
 index = np.arange(counting.shape[0])
 plt.bar(index, counting)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()


# if dice_side=2, is binomial distribution
# if dice_side 2 , is multinomial distribution
dice_side = 2
# if N becomes larger, then multinomial distribution will more like normal distribution
N = 100

counting = np.zeros(((dice_side - 1) * N + 1))

for i in range(30000):
 sum = 0
 for j in range(N):
  dice_result = np.random.randint(0, dice_side)
  sum += dice_result

 counting[sum] += 1

# normalization
counting /= np.sum(counting)
plot_bar_x()

以上这篇python 计算概率密度、累计分布、逆函数的例子就是小编分享给大家的全部内容了,希望能给大家一个参考。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-09-11 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档