前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >回溯算法:求子集问题!

回溯算法:求子集问题!

作者头像
代码随想录
发布2020-11-10 11:23:36
1.6K0
发布2020-11-10 11:23:36
举报
文章被收录于专栏:代码随想录

给「代码随想录」一个星标吧!

❝认识本质之后,这就是一道模板题 通知:我将公众号文章和学习相关的资料整理到了Github :https://github.com/youngyangyang04/leetcode-master,方便大家在电脑上学习,可以fork到自己仓库,顺便也给个star支持一波吧! ❞

第78题. 子集

题目地址:https://leetcode-cn.com/problems/subsets/

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例: 输入: nums = [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]

思路

求子集问题和回溯算法:求组合问题!回溯算法:分割问题!又不一样了。

如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,「那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!」

其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。

「那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!」

有同学问了,什么时候for可以从0开始呢?

求排列问题的时候,就要从0开始,因为集合是有序的,{1, 2} 和{2, 1}是两个集合,排列问题我们后续的文章就会讲到的。

以示例中nums = [1,2,3]为例把求子集抽象为树型结构,如下:

从图中红线部分,可以看出「遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合」

回溯三部曲

  • 递归函数参数

全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)

递归函数参数在上面讲到了,需要startIndex。

代码如下:

代码语言:javascript
复制
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
  • 递归终止条件

从图中可以看出:

剩余集合为空的时候,就是叶子节点。

那么什么时候剩余集合为空呢?

就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了,代码如下:

代码语言:javascript
复制
if (startIndex >= nums.size()) {
    return;
}

「其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了」

  • 单层搜索逻辑

「求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树」

那么单层递归逻辑代码如下:

代码语言:javascript
复制
for (int i = startIndex; i < nums.size(); i++) {
    path.push_back(nums[i]);    // 子集收集元素
    backtracking(nums, i + 1);  // 注意从i+1开始,元素不重复取
    path.pop_back();            // 回溯
}

C++代码

根据关于回溯算法,你该了解这些!给出的回溯算法模板:

代码语言:javascript
复制
void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

可以写出如下回溯算法C++代码:

代码语言:javascript
复制
class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        result.push_back(path); // 收集子集
        if (startIndex >= nums.size()) { // 终止条件可以不加
            return;
        }
        for (int i = startIndex; i < nums.size(); i++) {
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums, 0);
        return result;
    }
};

在注释中,可以发现可以不写终止条件,因为本来我们就要遍历整颗树。

有的同学可能担心不写终止条件会不会无限递归?

并不会,因为每次递归的下一层就是从i+1开始的。

总结

相信大家经过了

洗礼之后,发现子集问题还真的有点简单了,其实这就是一道标准的模板题。

但是要清楚子集问题和组合问题、分割问题的的区别,「子集是收集树形结构中树的所有节点的结果」

「而组合问题、分割问题是收集树形结构中叶子节点的结果」

就酱,如果感觉收获满满,就帮Carl宣传一波「代码随想录」吧!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-11-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 代码随想录 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 第78题. 子集
  • 思路
    • 回溯三部曲
      • C++代码
      • 总结
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档