前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >摄影测量(计算机视觉)中的三角化方法

摄影测量(计算机视觉)中的三角化方法

作者头像
3D视觉工坊
发布2020-11-19 16:48:11
8290
发布2020-11-19 16:48:11
举报

提到三角化大家都十分熟悉,在CV 领域中,由像点计算物点的过程称为三角化,但在摄影测量领域,其称作为前方交会。值得注意的是单张影像是无法恢复像点的三维坐标,至少需要两张影像才能得到像素点的真实坐标(这里已知两张影像的pose信息)

三角化有很多方法,这里介绍两帧三角化、多帧三角化、迭代三角化、选权迭代多帧三角化(并附上本人代码)。

代码语言:javascript
复制

1、两帧三角化

在opencv 中函数triangulatePoints就可根据两帧的pose 和内参恢复三维点坐标,cv中的三角化是两帧且是没有权的。

其函数参数如下:

代码语言:javascript
复制
void cv::triangulatePoints ( InputArray  projMatr1, //P1 1 3*4
InputArray  projMatr2, //P2 3*4
InputArray  projPoints1, //pixel coordinates
InputArray  projPoints2, // pixel coordinates
OutputArray  points4D // 3D coordinates
) 

2、多帧三角化

三角化严密解推导过程:

由共线条件方程得到三角化严密解法,将分母移到左边,得到

整理可得:

l1X+l3Y+l3Z−lx=0L4X+l5Y+l6Z−ly=0

其中:

从上可以知道,一个像点可以列2个方程,对于n个同名像点就可以列2n个方程(AX=B,超定方程按照最小二乘求解),即是多帧三角化,代码如下:

代码语言:javascript
复制
def pixelToCam(pts,K):
    '''

    :param pts: pixel coordinates
    :param K: camera params
    :return: camera coordinates
    '''
    camPts=np.zeros((1,2))
    camPts[0,0]=(pts[0,0]-K[0,2])/K[0,0]
    camPts[0,1]=(pts[0,1]-K[1,2])/K[1,1]
    return camPts
def getEquation(camPts,R,t):
    '''
    build equation ,one pixel point get 2 equations
    :param camPts: camera coordinates
    :param R: image pose-rotation ,world to camera
    :param t: image pose -translation,is camera center(t=-R.T*tvec)
    :return: equation coefficient
    '''
    A=np.zeros((2,3))
    b=np.zeros((2,1))
    A[0,0]=R[0,0]-camPts[0,0]*R[2,0]
    A[0,1]=R[0,1]-camPts[0,0]*R[2,1]
    A[0,2]=R[0,2]-camPts[0,0]*R[2,2]
    b[0,0]=t[0,0]*A[0,0]+t[0,1]*A[0,1]+t[0,2]*A[0,2]
    A[1,0]=R[1,0]-camPts[0,1]*R[2,0]
    A[1,1]=R[1,1]-camPts[0,1]*R[2,1]
    A[1,2]=R[1,2]-camPts[0,1]*R[2,2]
    b[1,0]=t[0,0]*A[1,0]+t[0,1]*A[1,1]+t[0,2]*A[1,2]
    return A,b

3 、迭代三角化

其做法就是在方程系数加入因子,不断调整系数的因子,本人代码如下:

代码语言:javascript
复制
def IterativeLinearLSTri(u1,P1,u2,P2):
    wi,wi1=1,1 #不断需要更新的因子
    X=np.zeros((4,1))
    for i in range(10): #迭代10次
        X_=linear_ls_triangulation(u1,P1,u2,P2) # 线性求解两帧的像素点的三维坐标
        X[1,0]=X_[0,1]
        X[2,0]=X_[0,2]
        X[3,0]=1
        p2x=np.dot(P1[2,:].reshape(1,4),X)[0,0]
        p2x1=np.dot(P2[2,:].reshape(1,4),X)[0,0]
        if abs(wi-p2x) <=0.001 and abs(wi1-p2x1)<=0.001 :
            break
        wi=p2x
        wi1=p2x1
        A = np.array([(u1[0]*P1[2, 0] - P1[0, 0])/wi, (u1[0]*P1[2, 1] - P1[0, 1])/wi,
                      (u1[0]*P1[2, 2] - P1[0, 2])/wi, (u1[1]*P1[2, 0] - P1[1, 0])/wi,
                      (u1[1]*P1[2, 1] - P1[1, 1])/wi, (u1[1]*P1[2, 2] - P1[1, 2])/wi,
                      (u2[0]*P2[2, 0] - P2[0, 0])/wi1, (u2[0]*P2[2, 1] - P2[0, 1])/wi1,
                      (u2[0]*P2[2, 2] - P2[0, 2])/wi1, (u2[1]*P2[2, 0] - P2[1, 0])/wi1,
                      (u2[1]*P2[2, 1] - P2[1, 1])/wi1,
                      (u2[1]*P2[2, 2] - P2[1, 2])/wi1]).reshape(4, 3)
        B = np.array([-(u1[0]*P1[2, 3] - P1[0, 3])/wi,
                      -(u1[1]*P1[2, 3] - P1[1, 3])/wi,
                      -(u2[0]*P2[2, 3] - P2[0, 3])/wi1,
                      -(u2[1]*P2[2, 3] - P2[1, 3])/wi1]).reshape(4, 1)
        
        ret, X_ = cv2.solve(A, B, flags=cv2.DECOMP_SVD)
        X[0,0]=X_[0,0]
        X[1,0]=X_[1,0]
        X[2,0]=X_[2,0]
        X[3,0]=1
    return X

4、选权迭代多帧三角化

首先解释选权迭代(IGG算法),上世纪 80 年代,首创从验后方差估计导出粗差定位的选权迭代法,命名为“李德仁方法”。在实际测量工作中客观条件的限制,很难完全避免粗差的存在或做到完全同等精度量测.在平差过程中,通常引入权作为比较观测值之间相对精度高低的指标,并为精度较高的观测数据赋予较高的权重,这样就可规避有害信息的干扰。例如,我们在image matching 的匹配的时候,会用到ransac(同样是稳健估计算法) 剔除outlier,但是当你的同名点是在多帧上且只有一个的时候(比如多帧红绿灯的位置测量),ransac 就不能再使用,这个时候使用IGG 算法可以有效的规避误点带来影响,论文参考-多像空间前方交会的抗差总体最小二乘估计,本人将论文的算法进行了复现,代码如下:

代码语言:javascript
复制
def IterationInsection(pts,K,R,t):
    # cam_xyz is  inital value
    # 这里假设像点x,y是等权的
    k0=1.5
    k1=2.5 # K1=2
    weight=np.identity(len(pts)*2)
    cam_xyz=mutiTriangle(pts,K,R,t)
    cam_xyz_pre=cam_xyz
    iteration=0
    while 1:
        d=np.zeros((len(pts),1))
        for i in range(len(R)):
            pro,J = cv2.projectPoints(cam_xyz.reshape(1, 1, 3), R[i], t[i], K, np.array([]))
            pro=pro.reshape(1,2)
            deltax=pro[0,0]-pts[i][0,0]
            deltay=pro[0,1]-pts[i][0,1]
            d[i,0]=np.sqrt(deltax**2+deltay**2)
        weight_temp=np.diag(weight)[::2].reshape(-1,1)
        delta=np.sqrt(np.sum(weight_temp*d**2)/(len(pts)-2))
        w=np.zeros((len(pts),1))
        for i in range(len(pts)):
            u=d[i]
            if abs(u)<k0*delta:
                w[i]=1
            elif abs(u)<k1*delta and abs(u)>=k0*delta:
                w[i]=delta/u
            elif abs(u)>=k1*delta:
                w[i]=0
        weight_temp=w
        weight_p=[val for val in weight_temp.reshape(-1,) for i in range(2)]
        weight_p=np.diag(weight_p)
        cam_xyz_curr=weight_mutiTriangle(pts,K,R,t,weight_p)
        dx=cam_xyz_curr[0,0]-cam_xyz_pre[0,0]
        dy=cam_xyz_curr[1,0]-cam_xyz_pre[1,0]
        dz=cam_xyz_curr[2,0]-cam_xyz_pre[2,0]
        # print(dx,dy,dz)
        if np.sqrt(dx**2+dy**2+dz**2)<0.01:
            break
        else:
            cam_xyz=cam_xyz_curr
            cam_xyz_pre=cam_xyz_curr
            weight=weight_p
            iteration+=1
#    print("d{0}".format(d))
    print("iteration is {0}\n".format(iteration))
    print("IGG....{0},{1},{2}".format(cam_xyz[0,0],cam_xyz[1,0],cam_xyz[2,0]))
    return cam_xyz,weight

其中mutiTriangle 函数和weight_mutiTriangle函数如下:

代码语言:javascript
复制
def mutiTriangle(pts,K,R,t):
    if len(pts)>=4: #这里是假设至少track 4帧
        equa_A=[]
        equa_b=[]
        for i in range(len(pts)):
            camPts=pixelToCam(pts[i],K)
            t1=np.dot(np.linalg.inv(R[i]),-t[i]).reshape(1,3)
            A1,b1=getEquation(camPts,R[i],t1)
            equa_A.append(A1)
            equa_b.append(b1)
        AA=np.vstack(equa_A)
        bb=np.vstack(equa_b)
        P_ls=np.dot(np.linalg.inv(AA.T@AA),AA.T@bb)
        return P_ls
    else:
        print("tracker pixel point less 3,can not insection........")
        return None
代码语言:javascript
复制
def weight_mutiTriangle(pts,K,R,t,weight):
    if len(pts)>=4:
        equa_A=[]
        equa_b=[]
        for i in range(len(pts)):
            camPts=pixelToCam(pts[i],K)
            t1=np.dot(np.linalg.inv(R[i]),-t[i]).reshape(1,3)
            A1,b1=getEquation(camPts,R[i],t1)
            equa_A.append(A1)
            equa_b.append(b1)
        AA=np.vstack(equa_A)
        bb=np.vstack(equa_b)
        P_ls=np.dot(np.linalg.pinv(AA.T@weight@AA),AA.T@weight@bb)
        return P_ls
    else:
        print("tracker pixel point less 4,can not insection........")
        return None

参考文献:

1、多像空间前方交会的抗差总体最小二乘估计[J].李忠美.测绘学报

本文仅做学术分享,如有侵权,请联系删文。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-11-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 3D视觉工坊 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档