暂无搜索历史
卡尔曼滤波是一种基于概率论和线性代数的算法,用于处理具有随机噪声的动态系统。其基本思想是将系统的状态表示为一个随机变量,并通过观测数据和模型方程来对该随机变量进...
Arxiv 链接:https://arxiv.org/abs/2304.04672
论文作者:Shaohui Liu, Yifan Yu, Rémi Pautrat, Marc Pollefeys, Viktor Larsson
标题:Point-LIO: Robust High-Bandwidth LiDAR-Inertial Odometry
我觉得针对这个问题最简单(但不是最正确的)的回答应该是:“CMake是服务于将源代111码转换成可执行的文件的工具”。
用于从单目RGBD视频序列中跟踪未知物体的6自由度运动,同时进行物体的隐式神经三维重建,方法接近于实时(10Hz)。
在工坊平台,常常会有企业老板联系我们,希望工坊能够快速帮忙对接相应人才,以帮忙解决项目中棘手的难题,比如机械臂抓取、相机标定、缺陷检测、点云后处理、三维处理、 ...
AVM环视系统中相机参数通常是汽车出厂前在标定车间中进行的离线阶段标定。很多供应商还提供了不依赖于标定车间的汽车自标定方法。自标定指的是:汽车在马路上慢速行驶一...
ChatGPT 引发了语言大模型狂潮,AI 另一个重大领域 —— 视觉 —— 的 GPT 时刻何时到来?
标题:ImPosing:Implicit Pose Encoding for Efficient Visual Localization
高效准确地分解三维场景的几何结构并对其进行任意编辑是三维场景理解与交互的关键问题,也是虚拟现实、智能机器等应用的基础。经典的几何方法如SfM/SLAM只能重建稀...
SLAM就是机器人同步定位与建图,通过一些传感器的测量数据同时去建立环境的地图,且利用这个地图对于机器人的状态进行估计,机器人的状态包括机器人的位姿、速度和机器...
不是别人,正是OpenAI的金主爸爸、不久前刚拿ChatGPT“重新发明搜索引擎”的微软。
今天给大家分享IEEE Robotics and Automation Letters上发表经典文章:FAST-LIO: A Fast, Robust LiDA...
四足机器人控制当中,步态是至关重要的一项。我们可以简单理解成四足机器人运动过程中各腿的状态,在这套设计方案中,我们对步态的规划主要分成两大主要部分,即接触状态和...
可能因为进入了新学期,本人遇到了几次身边小学弟和网友的提问:机器人学和SLAM该怎么入门好?由于回答了几次问题,就借着这个机会把问题的回答整理归纳下。这篇分享仅...
标题:ELSR: Efficient Line Segment Reconstruction with Planes and Points Guidance
在机器视觉领域中,相机是获取高质量图像的核心设备。选择最佳的相机参数对于实现高质量图像非常关键。但是,对于新手来说,面对众多的参数选择,很容易让人头疼不已。本文...
本文提出了一个表示高保真点云传感器观测的框架,用于实现高效的通信和存储。该方法利用稀疏高斯过程将点云进行压缩编码。我们的方法只使用一个模型(一个2D稀疏高斯过程...
一般有两个坐标系:大地基准坐标系w系(或者G系)与机器人本体坐标系b系(或者I系),两坐标系之间的旋转矩阵表示为:
暂未填写技能专长