前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深入探究Linux Kprobe机制

深入探究Linux Kprobe机制

作者头像
Linux阅码场
发布2020-12-14 09:46:39
1.5K0
发布2020-12-14 09:46:39
举报
文章被收录于专栏:LINUX阅码场LINUX阅码场
代码语言:javascript
复制
来自:liuhangtiant

概述


kprobe机制用于在内核中动态添加一些探测点,可以满足一些调试需求。本文主要探寻kprobe的执行路径,也就是说如何trap到kprobe,以及如何回到原路径继续执行。

实例


先通过一个实例来感受下kprobe,linux中有一个现成的实例: samples/kprobes/kprobe_example.c 由于当前验证环境是基于qemu+arm64,我删除了其他架构的代码,并稍稍做了一下改动:

代码语言:javascript
复制
/*
 * NOTE: This example is works on x86 and powerpc.
 * Here's a sample kernel module showing the use of kprobes to dump a
 * stack trace and selected registers when _do_fork() is called.
 *
 * For more information on theory of operation of kprobes, see
 * Documentation/kprobes.txt
 *
 * You will see the trace data in /var/log/messages and on the console
 * whenever _do_fork() is invoked to create a new process.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>

#define MAX_SYMBOL_LEN  64
static char symbol[MAX_SYMBOL_LEN] = "_do_fork";
module_param_string(symbol, symbol, sizeof(symbol), 0644);

/* For each probe you need to allocate a kprobe structure */
static struct kprobe kp = {
  .symbol_name  = symbol,
};

/* kprobe pre_handler: called just before the probed instruction is executed */
static int handler_pre(struct kprobe *p, struct pt_regs *regs)
{
  pr_info("<%s> pre_handler: p->addr = 0x%p, pc = 0x%lx,"
      " pstate = 0x%lx\n",
    p->symbol_name, p->addr, (long)regs->pc, (long)regs->pstate);

  dump_stack();
  /* A dump_stack() here will give a stack backtrace */
  return 0;
}

/* kprobe post_handler: called after the probed instruction is executed */
static void handler_post(struct kprobe *p, struct pt_regs *regs,
        unsigned long flags)
{
  pr_info("<%s> post_handler: p->addr = 0x%p, pstate = 0x%lx\n",
    p->symbol_name, p->addr, (long)regs->pstate);
  dump_stack();
}

/*
 * fault_handler: this is called if an exception is generated for any
 * instruction within the pre- or post-handler, or when Kprobes
 * single-steps the probed instruction.
 */
static int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
{
  pr_info("fault_handler: p->addr = 0x%p, trap #%dn", p->addr, trapnr);
  /* Return 0 because we don't handle the fault. */
  return 0;
}

static int __init kprobe_init(void)
{
  int ret;
  kp.pre_handler = handler_pre;
  kp.post_handler = handler_post;
  kp.fault_handler = handler_fault;

  ret = register_kprobe(&kp);
  if (ret < 0) {
    pr_err("register_kprobe failed, returned %d\n", ret);
    return ret;
  }
  pr_info("Planted kprobe at %p\n", kp.addr);
  return 0;
}

static void __exit kprobe_exit(void)
{
  unregister_kprobe(&kp);
  pr_info("kprobe at %p unregistered\n", kp.addr);
}

module_init(kprobe_init)
module_exit(kprobe_exit)
MODULE_LICENSE("GPL");

这段代码很简单,默认情况下,kprobe做了3个钩子,分别在_do_fork对应位置的指令执行之前,执行之后,以及出异常的时候。 插入该内核模块之后,随便输入一条命令,可看到下面的打印:

代码语言:javascript
复制
[   19.882832] kprobe_example: loading out-of-tree module taints kernel.
[   19.900442] Planted kprobe at (____ptrval____)
[   19.908571] <_do_fork> pre_handler: p->addr = 0x(____ptrval____), pc = 0xffff0000080d2c98, pstate = 0x80000005
[   19.913657] CPU: 0 PID: 1358 Comm: udevd Tainted: G           O      4.18.0 #7
[   19.916239] Hardware name: linux,dummy-virt (DT)
[   19.918400] Call trace:
[   19.919373]  dump_backtrace+0x0/0x180
[   19.920681]  show_stack+0x14/0x20
[   19.921817]  dump_stack+0x90/0xb4
[   19.923678]  handler_pre+0x24/0x68 [kprobe_example]
[   19.926357]  kprobe_breakpoint_handler+0xbc/0x160
[   19.926627]  brk_handler+0x70/0x88
[   19.926802]  do_debug_exception+0x94/0x160
[   19.927102]  el1_dbg+0x18/0x78
[   19.927299]  _do_fork+0x0/0x358
[   19.927465]  el0_svc_naked+0x30/0x34
[   19.928973] <_do_fork> post_handler: p->addr = 0x(____ptrval____), pstate = 0x80000005
[   19.929361] CPU: 0 PID: 1358 Comm: udevd Tainted: G           O      4.18.0 #7
[   19.929693] Hardware name: linux,dummy-virt (DT)
[   19.929962] Call trace:
[   19.930102]  dump_backtrace+0x0/0x180
[   19.930289]  show_stack+0x14/0x20
[   19.930461]  dump_stack+0x90/0xb4
[   19.934684]  handler_post+0x24/0x30 [kprobe_example]
[   19.934968]  post_kprobe_handler+0x54/0x98
[   19.935234]  kprobe_single_step_handler+0x74/0xa8
[   19.935389]  single_step_handler+0x3c/0xb0
[   19.935516]  do_debug_exception+0x94/0x160
[   19.935642]  el1_dbg+0x18/0x78
[   19.935965]  0xffff000000ac8004
[   19.936067]  el0_svc_naked+0x30/0x34

probe和post钩子得到执行,这对查看内核的调用栈非常有帮助。

深入探究

是否只能基于symbol_name做kprobe?

显然不太可能,struct kprobe中有一个addr成员,很明显是可以直接基于地址做kprobe的。 把这段代码:

代码语言:javascript
复制
#define MAX_SYMBOL_LEN  64
static char symbol[MAX_SYMBOL_LEN] = "_do_fork";
module_param_string(symbol, symbol, sizeof(symbol), 0644);

/* For each probe you need to allocate a kprobe structure */
static struct kprobe kp = {
  .symbol_name  = symbol,
};

修改为:

代码语言:javascript
复制
/* For each probe you need to allocate a kprobe structure */
static struct kprobe kp = {
  .addr= (kprobe_opcode_t *)0xffff0000080d2c98,
};

效果是一样的。

kprobe是如何动态添加探针的?

这个肯定要分析代码了,好在代码相当简单:

代码语言:javascript
复制
register_kprobe
   |------arm_kprobe
   |   |------__arm_kprobe
   |   |   |------arch_arm_kprobe

/* arm kprobe: install breakpoint in text */
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
  patch_text(p->addr, BRK64_OPCODE_KPROBES);
}

从注释就可以很明显看出来,是把addr对应位置的指令修改为brk指令,当然这里说的是ARM64架构。那么一旦CPU执行到addr,就会触发异常,trap到kprobe注册的钩子上。

post钩子为什么会用到single step

从上面的调用栈可以看到,post钩子实际上是通过单步断点trap过来的?为什么需要用到单步断点呢?这个其实很好解释。我们先来理一下kprobe的过程:

  • 把addr位置的指令修改为brk指令
  • CPU执行到addr处trap到pre执行
  • pre执行完毕后需要把addr处的指令恢复
  • CPU继续执行addr处的指令
  • CPU执行post 那么CPU如何才能执行到post,很简单,使能单步执行就可以了。肯定有人会说,可以把addr+4的指令也替换成brk,这个肯定是不行的,因为ARM64可能是32位/16位指令混编的,即便是固定32位指令,CPU下一条要执行的指令也不一定是addr+4,比如当前addr是一条跳转指令。

fault_handler 钩子什么时候会用到

通过分析代码可知,当发生page fault的时候,会调用当前正在running的kprobe的fault_handler钩子,所以这里发生page fault的代码并不一定是addr处的指令,也可能是pre或者post中的指令。我在pre中注入一段访问0地址的逻辑:

代码语言:javascript
复制
static void * g_addr=0;
static int handler_pre(struct kprobe *p, struct pt_regs *regs) __attribute__((optimize("O0")));
static int handler_pre(struct kprobe *p, struct pt_regs *regs)
{
  pr_info("<%s> pre_handler: p->addr = 0x%p, pc = 0x%lx,"
      " pstate = 0x%lx\n",
    p->symbol_name, p->addr, (long)regs->pc, (long)regs->pstate);

    printk("%d\n", *(char *)g_addr);
  /* A dump_stack() here will give a stack backtrace */
  return 0;
}

经验证确实调用到了fault_handler钩子:

代码语言:javascript
复制
[   17.272594] kprobe_example: loading out-of-tree module taints kernel.
[   17.294266] Planted kprobe at (____ptrval____)
# 
# ls
[   19.072586] <(null)> pre_handler: p->addr = 0x(____ptrval____), pc = 0xffff0000080d2c98, pstate = 0x80000005
[   19.073189] fault_handler: p->addr = 0x(____ptrval____), trap #-1778384890n
[   19.073568] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[   19.074271] Mem abort info:
[   19.074393]   ESR = 0x96000006
[   19.074641]   Exception class = DABT (current EL), IL = 32 bits
[   19.074887]   SET = 0, FnV = 0
[   19.075014]   EA = 0, S1PTW = 0
[   19.075174] Data abort info:
[   19.075324]   ISV = 0, ISS = 0x00000006
[   19.075455]   CM = 0, WnR = 0
[   19.075774] user pgtable: 4k pages, 48-bit VAs, pgdp = (____ptrval____)
[   19.076005] [0000000000000000] pgd=00000000485c6003, pud=00000000bb2f4003, pmd=0000000000000000
[   19.076596] Internal error: Oops: 96000006 [#1] PREEMPT SMP
[   19.076924] Modules linked in: kprobe_example(O)
[   19.077693] CPU: 0 PID: 1387 Comm: sh Tainted: G           O      4.18.0 #7
[   19.077927] Hardware name: linux,dummy-virt (DT)
[   19.078298] pstate: 400003c5 (nZcv DAIF -PAN -UAO)
[   19.078962] pc : handler_pre+0x50/0x70 [kprobe_example]
[   19.079149] lr : handler_pre+0x44/0x70 [kprobe_example]
[   19.079359] sp : ffff00000ac63c00
[   19.079565] x29: ffff00000ac63c00 x28: ffff80007a3c9a80 
[   19.079821] x27: ffff000008ac1000 x26: 00000000000000dc 
[   19.080047] x25: ffff80007dfb7788 x24: 0000000000000000 
[   19.080363] x23: ffff0000080d2c98 x22: ffff00000ac63d70 
[   19.080621] x21: ffff000000ac2000 x20: 0000800074f02000 
[   19.080863] x19: ffff0000090b5788 x18: ffffffffffffffff 
[   19.081197] x17: 0000000000000000 x16: 0000000000000000 
[   19.081501] x15: ffff0000090d96c8 x14: 3030303030666666 
[   19.081720] x13: 667830203d206370 x12: ffff0000090d9940 
[   19.081933] x11: ffff0000085dd8d8 x10: 5f287830203d2072 
[   19.082189] x9 : 0000000000000017 x8 : 2065746174737020 
[   19.082455] x7 : 2c38396332643038 x6 : ffff80007dfb8240 
[   19.082660] x5 : ffff80007dfb8240 x4 : 0000000000000000 
[   19.082871] x3 : ffff80007dfbf030 x2 : 793b575e486def00 
[   19.083068] x1 : 0000000000000000 x0 : 0000000000000000 
[   19.083390] Process sh (pid: 1387, stack limit = 0x(____ptrval____))
[   19.083783] Call trace:
[   19.084020]  handler_pre+0x50/0x70 [kprobe_example]
[   19.084470]  kprobe_breakpoint_handler+0xbc/0x160
[   19.084693]  brk_handler+0x70/0x88
[   19.084839]  do_debug_exception+0x94/0x160
[   19.085132]  el1_dbg+0x18/0x78
[   19.085259]  _do_fork+0x0/0x358
[   19.085443]  el0_svc_naked+0x30/0x34
[   19.085939] Code: 95d9a53f b0000000 9101c000 f9400000 (39400000) 
[   19.086713] ---[ end trace 3bb11c402bc37363 ]---

但由于fault_handler中没有对该异常做处理,所以依然挂死了。 fault_handler可以用于报错或者纠错,报错可以自定义一些错误信息给用户,以便分析错误;纠错用于修改错误,那么针对当前这个错误应该怎么做纠错呢? 在fault_handler中为g_addr分配空间?,这显然不行,g_addr肯定已经被载入寄存器了,此时修改已经太迟。唯一的方法就是修改寄存器的值,而寄存器此时肯定已经入栈了,所以必须修改寄存器在栈里面的内容。 下面我们来fixup这个挂死问题:

  • 根据挂死信息
代码语言:javascript
复制
[   19.084020]  handler_pre+0x50/0x70 [kprobe_example]

是在handler_pre+0x50这个位置出异常的,通过反汇编得知这个位置对应的指令是:

代码语言:javascript
复制
  50:   39400000        ldrb    w0, [x0]

x0的内容是0,所以这里是读0地址,很明显,g_addr被载入到了x0中,所以只要修改x0就可以了。

  • fixup实现 修改fault_handler函数:
代码语言:javascript
复制
static int g_addr1=0x5a;
static int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
{
  pr_info("fault_handler: p->addr = 0x%p, trap #%dn", p->addr, trapnr);
  regs->regs[0] = (unsigned long)&g_addr1;
  /* Return 0 because we don't handle the fault. */
  return 1;
}
  • 验证
代码语言:javascript
复制
[   58.882059] <(null)> pre_handler: p->addr = 0x(____ptrval____), pc = 0xffff0000080d2c98, pstate = 0x80000005
[   58.882393] fault_handler: p->addr = 0x(____ptrval____), trap #-1778384890n
[   58.882411] 90
[   58.882658] <(null)> post_handler: p->addr = 0x(____ptrval____), pstate = 0x80000005
[   58.882960] CPU: 1 PID: 1388 Comm: sh Tainted: G           O      4.18.0 #7

fault_handler之后,pre_handler打印了g_addr对应地址的内容是90,也就是0x5a。 大功告成,我们成功的让内核访问了0地址,并且返回了0x5a。

当然,这一切都是假的!

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-11-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Linux阅码场 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 概述
  • 实例
  • 深入探究
    • 是否只能基于symbol_name做kprobe?
      • kprobe是如何动态添加探针的?
        • post钩子为什么会用到single step
          • fault_handler 钩子什么时候会用到
          • 当然,这一切都是假的!
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档