前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >pytorch学习率下降策略

pytorch学习率下降策略

作者头像
chaibubble
发布2021-01-29 11:07:08
1K0
发布2021-01-29 11:07:08
举报
文章被收录于专栏:深度学习与计算机视觉

阶段离散下降调整策略:

首先“阶段离散”下降调整这个词不是个专有名词,它只是一个形容。 符合这种调整策略的方法,一般是step,step学习率下降策略是最为常用的一种,表现为,在初始学习率的基础上,每到一个阶段学习率将以gamma的指数倍下降,通常情况下gamma为0.1。显然随着训练迭代学习率会变的越来越小,但是不管怎么变,这个数都在趋近于0,永远不会到0. 效果类似于:

代码语言:javascript
复制
# lr = 0.05     if epoch < 30        
# lr = 0.005    if 30 <= epoch < 60        
# lr = 0.0005   if 60 <= epoch < 90

pytorch中定义了两种方法做这件事,分别是等间隔调整学习率(Step),按需调整学习率(MultiStep),实际上它们的效果是一致的

等间隔下降调整策略

等间隔的调整是在定义间隔是什么,即step_size,当训练的epoch满足step_size时,学习率就调整一次,last_epoch对step_size取整。

代码语言:javascript
复制
class StepLR(_LRScheduler):
    def __init__(self, optimizer, step_size, gamma=0.1, last_epoch=-1, verbose=False):
        self.step_size = step_size
        self.gamma = gamma
        super(StepLR, self).__init__(optimizer, last_epoch, verbose)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn("To get the last learning rate computed by the scheduler, "
                          "please use `get_last_lr()`.", UserWarning)

        if (self.last_epoch == 0) or (self.last_epoch % self.step_size != 0):
            return [group['lr'] for group in self.optimizer.param_groups]
        return [group['lr'] * self.gamma
                for group in self.optimizer.param_groups]

    def _get_closed_form_lr(self):
        return [base_lr * self.gamma ** (self.last_epoch // self.step_size)
                for base_lr in self.base_lrs]

按需下降调整策略

按需调整学习率是在直接定义目标是什么,训练中,当前的epoch达到目标的时候,学习率调整,milestones就是定义的一系列目标,当last_epoch不在milestones中时,学习率保持不变,相反的,则gamma的指数倍调整,当然gamma是个小数,所以学习率越来越小。

代码语言:javascript
复制
class MultiStepLR(_LRScheduler):
    def __init__(self, optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False):
        self.milestones = Counter(milestones)
        self.gamma = gamma
        super(MultiStepLR, self).__init__(optimizer, last_epoch, verbose)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn("To get the last learning rate computed by the scheduler, "
                          "please use `get_last_lr()`.", UserWarning)

        if self.last_epoch not in self.milestones:
            return [group['lr'] for group in self.optimizer.param_groups]
        return [group['lr'] * self.gamma ** self.milestones[self.last_epoch]
                for group in self.optimizer.param_groups]

    def _get_closed_form_lr(self):
        milestones = list(sorted(self.milestones.elements()))
        return [base_lr * self.gamma ** bisect_right(milestones, self.last_epoch)
                for base_lr in self.base_lrs]

连续下降调整策略:

“连续”下降这个词不是个专有名词,它只是一个形容。 符合这种下降策略的方法有,线性下降策略,cos下降策略,指数衰减下降策略,前两种在Pytorch没有实现。它们的表现是,随着训练迭代,学习率的变化时逐步减少的,不会出现step方式的阶段下降,并且到迭代结束时,学习率为0,而不是一个非常小的值。

线性下降调整策略

线性下降策略非常好理解,就是学习率与迭代周期是线性关系,初始学习率和周期确定了,下降的斜率也就确定了。

代码语言:javascript
复制
 lr = args.lr * (1 - (current_iter - warmup_iter) / (max_iter - warmup_iter))

cos下降调整策略

cos下降策略到最后一步迭代的最后时,系数刚好为cos(pi/2),即为0,开始迭代时系数为为cos(0),即为1,中间遵循余弦曲线的方式下降。

代码语言:javascript
复制
lr = args.lr * (1 + cos(pi * (current_iter - warmup_iter) / (max_iter - warmup_iter))) / 2

指数衰减调整策略

指数衰减调整策略的计算方式和step是一样的,都是当前的epoch作为指数, gamma作为底数,即gamma**epoch。不同之处在于,指数衰减下降策略是每个epoch都会做的,可以看做在epoch间连续,其次,更为重要的是,选择指数衰减下降策略时gamma不能选择为0.1,否则几个epoch过去,学习率就非常趋近于0了,所以一般是0.9。

代码语言:javascript
复制
class ExponentialLR(_LRScheduler):
    def __init__(self, optimizer, gamma, last_epoch=-1, verbose=False):
        self.gamma = gamma
        super(ExponentialLR, self).__init__(optimizer, last_epoch, verbose)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn("To get the last learning rate computed by the scheduler, "
                          "please use `get_last_lr()`.", UserWarning)

        if self.last_epoch == 0:
            return self.base_lrs
        return [group['lr'] * self.gamma
                for group in self.optimizer.param_groups]

    def _get_closed_form_lr(self):
        return [base_lr * self.gamma ** self.last_epoch
                for base_lr in self.base_lrs]

周期性调整策略:

周期性调整的特点是不再从始至终单调的下降,而是会出现上升的情况。

余弦退火调整策略

以余弦函数为周期,并在每个周期最大值时重新设置学习率。以初始学习率为最大学习率,以 2∗Tmax 为周期,在一个周期内先下降,后上升。

代码语言:javascript
复制
class CosineAnnealingLR(_LRScheduler):
	def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1, verbose=False):
        self.T_max = T_max
        self.eta_min = eta_min
        super(CosineAnnealingLR, self).__init__(optimizer, last_epoch, verbose)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn("To get the last learning rate computed by the scheduler, "
                          "please use `get_last_lr()`.", UserWarning)

        if self.last_epoch == 0:
            return self.base_lrs
        elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
            return [group['lr'] + (base_lr - self.eta_min) *
                    (1 - math.cos(math.pi / self.T_max)) / 2
                    for base_lr, group in
                    zip(self.base_lrs, self.optimizer.param_groups)]
        return [(1 + math.cos(math.pi * self.last_epoch / self.T_max)) /
                (1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) *
                (group['lr'] - self.eta_min) + self.eta_min
                for group in self.optimizer.param_groups]

    def _get_closed_form_lr(self):
        return [self.eta_min + (base_lr - self.eta_min) *
                (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / 2
                for base_lr in self.base_lrs]

循环调整策略

在这里插入图片描述
在这里插入图片描述

循环调整顾名思义,就是以一个周期和一个上下界反复调整学习率,这个方法出自《Cyclical Learning Rates for Training Neural Networks》,这么做的理由是要避免模型进入局部最优的状态,也就是鞍点(saddle points)。而循环学习率方法使得一个范围(base_lr ~ max_lr)里的学习率在训练中都能得到运用,也就是说,在下边界和上边界中,那个最佳的学习率将会在训练中有机会运用到训练中。

代码语言:javascript
复制
torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr, max_lr, 
							step_size_up=2000,
							step_size_down=None, mode='triangular', gamma=1.0, scale_fn=None, 
							scale_mode='cycle', cycle_momentum=True, base_momentum=0.8,
							max_momentum=0.9, last_epoch=-1)

自适应调整策略:

顾名思义,之前的调整策略都是在出初始学习率和训练周期固定好之后就确定下来的规则,不会根据训练状态的变化而变化,自适应的调整则不同,依训练状况伺机调整,该法通过监测某一指标的变化情况,当该指标不再怎么变化的时候,就是调整学习率的时机。

ReduceLROnPlateau

ReduceLROnPlateau的名字很直观,就是在持续平稳的状态时下降学习率,当某指标不再变化(下降或升高),则调整学习率,这是非常实用的学习率调整策略。例如,当验证集的 loss 不再下降时,进行学习率调整;或者监测验证集的 accuracy,当accuracy 不再上升时,则调整学习率。

代码语言:javascript
复制
class ReduceLROnPlateau(object):
    def __init__(self, optimizer, mode='min', factor=0.1, patience=10,
                 threshold=1e-4, threshold_mode='rel', cooldown=0,
                 min_lr=0, eps=1e-8, verbose=False):

        if factor >= 1.0:
            raise ValueError('Factor should be < 1.0.')
        self.factor = factor

        # Attach optimizer
        if not isinstance(optimizer, Optimizer):
            raise TypeError('{} is not an Optimizer'.format(
                type(optimizer).__name__))
        self.optimizer = optimizer

        if isinstance(min_lr, list) or isinstance(min_lr, tuple):
            if len(min_lr) != len(optimizer.param_groups):
                raise ValueError("expected {} min_lrs, got {}".format(
                    len(optimizer.param_groups), len(min_lr)))
            self.min_lrs = list(min_lr)
        else:
            self.min_lrs = [min_lr] * len(optimizer.param_groups)

        self.patience = patience
        self.verbose = verbose
        self.cooldown = cooldown
        self.cooldown_counter = 0
        self.mode = mode
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.best = None
        self.num_bad_epochs = None
        self.mode_worse = None  # the worse value for the chosen mode
        self.eps = eps
        self.last_epoch = 0
        self._init_is_better(mode=mode, threshold=threshold,
                             threshold_mode=threshold_mode)
        self._reset()

    def _reset(self):
        """Resets num_bad_epochs counter and cooldown counter."""
        self.best = self.mode_worse
        self.cooldown_counter = 0
        self.num_bad_epochs = 0

    def step(self, metrics, epoch=None):
        # convert `metrics` to float, in case it's a zero-dim Tensor
        current = float(metrics)
        if epoch is None:
            epoch = self.last_epoch + 1
        else:
            warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)
        self.last_epoch = epoch

        if self.is_better(current, self.best):
            self.best = current
            self.num_bad_epochs = 0
        else:
            self.num_bad_epochs += 1

        if self.in_cooldown:
            self.cooldown_counter -= 1
            self.num_bad_epochs = 0  # ignore any bad epochs in cooldown

        if self.num_bad_epochs > self.patience:
            self._reduce_lr(epoch)
            self.cooldown_counter = self.cooldown
            self.num_bad_epochs = 0

        self._last_lr = [group['lr'] for group in self.optimizer.param_groups]

    def _reduce_lr(self, epoch):
        for i, param_group in enumerate(self.optimizer.param_groups):
            old_lr = float(param_group['lr'])
            new_lr = max(old_lr * self.factor, self.min_lrs[i])
            if old_lr - new_lr > self.eps:
                param_group['lr'] = new_lr
                if self.verbose:
                    print('Epoch {:5d}: reducing learning rate'
                          ' of group {} to {:.4e}.'.format(epoch, i, new_lr))

    @property
    def in_cooldown(self):
        return self.cooldown_counter > 0

    def is_better(self, a, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            rel_epsilon = 1. - self.threshold
            return a < best * rel_epsilon

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return a < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            rel_epsilon = self.threshold + 1.
            return a > best * rel_epsilon

        else:  # mode == 'max' and epsilon_mode == 'abs':
            return a > best + self.threshold

    def _init_is_better(self, mode, threshold, threshold_mode):
        if mode not in {'min', 'max'}:
            raise ValueError('mode ' + mode + ' is unknown!')
        if threshold_mode not in {'rel', 'abs'}:
            raise ValueError('threshold mode ' + threshold_mode + ' is unknown!')

        if mode == 'min':
            self.mode_worse = inf
        else:  # mode == 'max':
            self.mode_worse = -inf

        self.mode = mode
        self.threshold = threshold
        self.threshold_mode = threshold_mode

    def state_dict(self):
        return {key: value for key, value in self.__dict__.items() if key != 'optimizer'}

    def load_state_dict(self, state_dict):
        self.__dict__.update(state_dict)
        self._init_is_better(mode=self.mode, threshold=self.threshold, threshold_mode=self.threshold_mode)

自定义调整策略:

LambdaLR

LambdaLR可以为不同参数组设定不同学习率调整策略。

代码语言:javascript
复制
torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

与其他调整规则的区别在于,optimizer和lr_lambda可以是list,对应之后,相应的参数就会根据对应规则调整

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021/01/23 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 阶段离散下降调整策略:
    • 等间隔下降调整策略
      • 按需下降调整策略
      • 连续下降调整策略:
        • 线性下降调整策略
          • cos下降调整策略
            • 指数衰减调整策略
            • 周期性调整策略:
              • 余弦退火调整策略
                • 循环调整策略
                • 自适应调整策略:
                  • ReduceLROnPlateau
                  • 自定义调整策略:
                    • LambdaLR
                    相关产品与服务
                    对象存储
                    对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
                    领券
                    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档