前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >高数1-常用公式

高数1-常用公式

作者头像
孔西皮
发布2021-03-04 11:57:20
8180
发布2021-03-04 11:57:20
举报
文章被收录于专栏:前行的CVer

⌛️本文状态:已完结✔️

常用公式

1. 常用麦克劳林展开

$$ \begin{align} &1. \sin x=x-\frac{1}{6}x^3+o(x^3)\\ &2. \arcsin x=x+\frac{1}{6}x^3+o(x^3)\\ &3. \tan x=x+\frac{1}{3}x^3+o(x^3)\\ &4. \arctan x=x-\frac{1}{3}x^3+o(x^3)\\ &5. \cos x=1-\frac{1}{2}x^2+\frac{1}{24}x^4+o(x^4)\\ &6. e^x=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+o(x^3)\\ &7. \ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3+o(x^3)\\ &8. (1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2}x^2+o(x^2) \end{align} $$

对应的等价无穷小:

  1. \sin x\sim x
  2. \arcsin x\sim x
  3. \tan x \sim x
  4. \arctan x\sim x
  5. 1-\cos x\sim\frac{1}{2}x^2
  6. e^x-1\sim x
  7. \ln(1+x)\sim x
  8. (1+x)^{\alpha}-1\sim \alpha x

拓展和记法:

  1. x-\sin x\sim \frac{1}{6}x^3
  2. x-\arcsin x\sim -\frac{1}{6}x^3
  3. x-\tan x\sim -\frac{1}{3}x^3
  4. x-\arctan x\sim \frac{1}{3}x^3

狗减sin狗,1/6狗三儿。

sin变arcsin,第二项变号。arcsin变tan,1/6变1/3。

sin变cos,各项求导。

2. 容易忘的微分公式

$$ \begin{align} 1.& (\arctan x)'=\frac{1}{1+x^2}\\ 2.& (arccot\ x)'=-\frac{1}{1+x^2}\\ 3.& (\arcsin x)'=\frac{1}{\sqrt{1-x^2}}\\ 4.& (\arccos x)'=-\frac{1}{\sqrt{1-x^2}}\\ 5.& \ln(x+\sqrt{x^2+a^2})'=\frac{1}{\sqrt{x^2+a^2}}\\ 6.& \ln(x+\sqrt{x^2-a^2})'=\frac{1}{\sqrt{x^2-a^2}} \end{align} $$

3. 四大基本积分法

3.1 基本积分表

$$ \begin{align} 1. &\int{\frac{1}{x^2}}dx=-\frac{1}{x}+C\\ 2. &\int{\frac{1}{\sqrt{x}}}dx=2\sqrt{x}+C\ (\frac{1}{\sqrt x}dx=d(2\sqrt x))\\ 3. &\int{\frac{1}{x}}dx=\ln|x|+C\\ 4. &\ \int \sin xdx=-\cos x+C\\ &\ \int \cos xdx=\sin x+C\\ &\ \int tanxdx=-\ln \left| \cos x\right| +C\\ &\ \int \cot xdx=\ln \left| \sin x\right| +C\\ &\ \int \dfrac {dx}{\cos x}=\int \sec xdx=\ln \left| \sec x+\tan x\right| +C\\ &\ \int \dfrac {dx}{\sin x}=\int \csc xdx=\ln \left| \csc x-\cot x\right| +C\\ &\ \int \sec ^{2}xdx=\tan x+C\\ &\ \int \csc ^{2}xdx=-\cot x+C\\ &\ \int \sec x\tan xdx=\sec x+C\\ &\ \int \csc x\cot xdx=-\csc x+C\\ 5. &\ \int \dfrac {1}{1 +x^{2}}dx=\arctan x+C\\ &\ \int \dfrac {1}{a^2 +x^{2}}dx=\dfrac{1}{a}\arctan \dfrac{x}{a}+C\\ 6. &\ \int \dfrac {1}{x^{2}-a^{2}}dx=\dfrac {1}{2a}\ln \left| \dfrac {x-a}{x+a}\right| +C\\ &\ \int \dfrac {1}{a^{2}-x^{2}}dx=\dfrac {1}{2a}\ln \left| \dfrac {x+a}{x-a}\right| +C\\ 7. &\ \int \dfrac {1}{\sqrt {1-x^{2}}}dx=\arcsin x+C\\ &\ \int \dfrac {1}{\sqrt {a^2-x^{2}}}dx=\arcsin \dfrac{x}{a}+C\\ 8. &\ \int \dfrac {1}{\sqrt {x^{2}+a^{2}}}dx=\ln \left( x+\sqrt {x^{2}+a^{2}}\right) +C\\ &\ \int \dfrac {1}{\sqrt {x^{2}-a^{2}}}dx=\ln \left( x+\sqrt {x^{2}-a^{2}}\right) +C\\ 9. &\int \sqrt {a^{2}-x^{2}}dx=\dfrac {a^{2}}{2}\arcsin \dfrac {x}{a}+\dfrac {x}{2} \sqrt {a^2-x^{2}}+C\\ \end{align} $$

【注】有价值的公式:

  1. \int \sin ^{2}xdx=\dfrac {x}{2}-\dfrac {\sin 2x}{4}+C 因为\sin ^{2}x=\dfrac {1-\cos 2x}{2}
  2. \int \cos ^{2}xdx=\dfrac {x}{2}+\dfrac {\sin 2x}{4}+C 因为\cos ^{2}x=\dfrac {1+\cos 2x}{2}
  3. \int \tan ^{2}xdx=\tan x-x+C 因为\tan ^{2}x=\sec ^{2}x-1
  4. \int \cot ^{2}xdx=-\cot x-x+C 因为\cot ^{2}x=\csc ^{2}x-1
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-05-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 常用公式
    • ¶1. 常用麦克劳林展开
      • ¶2. 容易忘的微分公式
        • ¶3. 四大基本积分法
          • ¶3.1 基本积分表
      相关产品与服务
      对象存储
      对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档