前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >FlinkSQL演进过程,解析原理及一些优化策略

FlinkSQL演进过程,解析原理及一些优化策略

作者头像
Spark学习技巧
发布2021-03-05 14:58:30
9830
发布2021-03-05 14:58:30
举报
文章被收录于专栏:Spark学习技巧

本文整理自Flink Forward 全球在线会议 ,演讲者云邪,由浪尖整理。

1. Flink table/sql架构演变

flink 1.9之前的版本,对于Table API和SQL的底层实现结构如下图,可以看处流处理和批处理有各自独立的api (流处理DataStream,批处理DataSet)。而且有不同的执行计划解析过程,codegen过程也完全不一样,完全没有流批一体的概念,面向用户不太友好。

自flink 1.9之后的版本,在Flink Planner基础上,增加了Blink Planner,架构图如下:

自flink 1.9 版本为了兼容老版本Table及SQL模块,插件化实现了Planner,Flink原有的Flink Planner不变,后期版本会被移除。新增加了Blink Planner,新的代码及特性会在Blink planner模块上实现。blink planner的批或者流都是通过解析为Stream Transformation来实现的,不像Flink Planner,批是基于Dataset,流是基于DataStream。

所以后期的架构会进一步实现流批统一,流批主要区别在Trasformation和codegen层,整体架构如下:

blink planner在1.11版本开始作为默认的planner,后期版本会移除调Flink Planner。

2. flink sql的工作机制

下图是flink sql 的从编码层到执行的解析过程概览图:

  1. flink 编程语言 : scala,java,python,sql。
  2. catalog支持hive 的metastore,也支持自定义Catalog。
  3. API到Logical plan,会有catalg参与进来-目前是可以基于hive metastore,也可以自定义,catalog会提供,比如udf参数,返回值类型,表路径等等信息。
  4. logical plan是优化起点,会被交给优化器optimizer进行优化,比如subquery 拆解,fliter/project下推,join recorder等,其实现过程中大量使用了calcite框架
  5. Physical plan使用code generation生成transformations,这里也是做了大量优化,比如Code Optimizations,state-of-art opertors,resource Optimizations等具体可以看上图。
  6. transformations之后就可以生成JobGraph了,可以用来提交到flink集群。
  7. 批和流的区别重点呈现在Pysical plan和transformations。

3.批处理SQL解析过程

案例sql

代码语言:javascript
复制
select 
  t1.id,1+2+t1.value as v
from t1 join t2 
where 
  t1.id = t2.id AND
  t2.id < 1000

首先,sql表达到逻辑执行计划,select操作对应Project,join对应join,where对应fliter,该逻辑计划如下图:

逻辑执行计划是优化的开始,案例中的sql优化过程如下:

常量折叠,也即是对sql中的常量的加减乘除等操作进行预计算,避免执行过程频繁对常量重复执行加减乘除计算:

上图常量折叠前:1+2+t1.value;折叠后:3+t1.value,逻辑执行计划缩减了一个大步骤。

filter下推执行,这里就是把t2.id<1000,下推到扫描 t2表的时候。

假设不进行这一步优化,执行过程是:全量数据扫描,执行join操作,然后才进行fiter,这明显很浪费,id大于1000的不需要执行join操作,将fliter操作下推到join之前执行,减少了join的数据量,大大提升性能。

project下推执行,可以用来避免加载不需要的字段。由原来的sql可知,t1只需要加载t1.id,t1.value,t2只需要加载t2.id。假如表还有大量的其他字段,由于SQL中没用到,加载多余字段就是浪费,所以将project操作下推执行,就不需要加载无用字段。而且此时假如是列存储,只需要加载指定的列,优化更大。

物理执行计划生成的时候也会进行很多优化操作,如根据代价cost选择批处理join有方式(sortmergejoin,hashjoin,boradcasthashjoin)。比如咱们这个例子,再filter下推之后,在t2.id<1000的情况下,由1 百万数据量变为了1 千条,计算cost之后,使用broadcasthashjoin最合适。

物理计划codegen过程,就是翻译成transformation tree的过程:

4.流处理SQL解析过程

flink 的流处理sql解析过程如下:

对于flink 流表的计算,在Optimizer和Physical plan过程中是需要引入changelog机制,也可以叫做retraction机制。

比如下面一条sql,表达含义就是先进行wordcount操作,得到临时表<列Row(word,cnt)>,然后统计频次cnt出现的次数。

代码语言:javascript
复制
SELECT cnt, COUNT(cnt) as freq
FROM (
  SELECT word, COUNT(*)as cnt
  FROM words
  GROUP BY word 
)
GROUP BY cnt

数据源先后输入的单词: hello,word ,hello。

期望的结果是cnt 值为1和2各 出现一次。

假如数据先输入了hello 和word两个词,得到计算过程及结果如下:

图中结果是cnt为1出现频次为2,因为word和hello各出现了一次。

此时,在输入hello,假设没有changelog机制,得到结果如下:

图中cnt 值为1出现的频次为2,cnt为2出现频次为1,这明显不符合预期,是错误的结果。

引入changelog机制,在wordcount aggregate计算结束之后,会给下游发送update_before和update_after两个消息,在进行cnt频率统计时,用来保证结果的正确性。

changelog机制保证了结果的正确性,同时query优化器决定者update_before消息是否需要,并且该机制对于用户来说是无感知的。

5.changelog机制介绍

5.1 确定node该产生消息类型

简单来说,对于flink流处理的动态实时表,主要是有三种操作Insert,update,delete。这三种操作在transfoation之间传递的时候就是对应着三种message,下游算子接受到这三种message之后就知道该进行如何操作了,changelog机制就以此来实现的。

消息正向传递过程解释:

  1. Source到word count的Aggregate算子只产生了一种消息-INSERT message。
  2. word count的Aggregate之后到Calc产生了两种message,分别是新增的消息 INSERT ,更新的消息UPDATE ,Calc不会产生新的消息,直接透传消息到cnt频次统计的Aggregate算子。
  3. cnt频次统计的Aggregate操作向UpsertSink发送了三种消息,分别是INSERT,UPDATE,DELETE。
  4. 最后upsertSink就根据cnt频次统计Aggregate传递的这三种消息,做具体的操作(insert,update),保证结果的正确性。

5.2 确定update消息内容

一个update消息,有两个内容:update_before和update_after。产生update消息的节点,可以只发送update_after,也可以同时发送两个消息,这个决定于下游算子,推导过程可以从sink到source。

update message推导过程:

  1. updsertSink假设只接受Update_After消息,那么他就会告诉频次统计的Aggregate,只发送Update_After消息即可。sink编写时确定接受消息类型。
  2. Aggregate知道前一层会发送:update_before和update_after,而自身也需要两种消息,那么就会通知Calc节点同时发送两种消息,其实Calc节点是不会产生消息,只会透传的。
  3. Calc会知道wordcount的aggregate算子会产生update_before和update_after,而且自己也需要向下传递两个消息,所以会要求Aggregate产生update_before和update_after两个消息。
  4. wordcount的aggregate算子由于知道source不会产生update消息,所以不会要求其传递update消息。

最后就是正向传递update消息的过程,具体过程如下图右侧,source 到sink流动箭头。

经过上述过程之后,最终生成的物理计划如下:

6. Flink的一些优化操作

6.1 内部数据结构优化

原有的row数据结构如图:

主要有以下几个缺点:

a.占用过多空间,比如object 头。

b.频繁的封箱和拆箱操作

c.序列化和反序列化的开销,尤其在随机访问字段的时候开销更明显。

新的内部数据结构,BinaryRow如下图:

BinaryRow有以下有点:

a.与MenorySegment深度整合。

b.大量减少反序列化及序列化操作/压缩/随机访问更友好

c.依然支持BinaryString,BinaryArray,BinaryMap。

解析一下,BinaryRow源码可以知道:

由Flink的最小内存管理单元 MemorySegment 支撑实现,能够大量减少序列化与反序列化的开销

正如上图所示,一个binary row含有两个部分: 定长和变长部分

a. Fixed-length part:

  • 一个字节长的header
  • null bit sets 用于null 的追踪??与8个字节长的字对齐
  • field values 保存基本类型和能以8个字节长存储的变长的值
  • 否则field values将会存储变长值的长度与offset
  • 完全落在MemorySegment,这会加速field的读写速度。
  • 单行的field的数值不能超过一个MemorySegment的容量

b.variable-length part:

  • 可能会由多个memorySegment来存储

6.2 预聚合策略

其实,就是通过设置参数 :

代码语言:javascript
复制
table.optimizer.agg-phase-strategy = TWO_PHASE

来开启map端聚合操作,减少shuffle数据量。

6.3 支持微批

大家都知道flink是可以基于时间和事件进行处理,原有策略是每条数据都会触发计算,状态更新等操作,这个其实性能也不是很好。

翻一下,就是逐条消息处理代价:

  • 每次都需要读写状态,
  • 每条消息都需要序列化反序列化,
  • 每条消息都会输出一次。

支持微批处理,就会缓解单事件处理的缺点,具体介绍如下:

策略也是很简单,批次加超时,来实现该功能,主要有三个配置:

代码语言:javascript
复制
// 开启支持微批table.exec.mini-batch.enabled = true// 微批处理超时时间设置,主要是处理 积累不到指定的批大小,程序永远等待的情况。table.exec.mini-batch.allow-latency = "5000 ms"// 每个批次的大小table.exec.mini-batch.size = 1000

优点:

  • 使用堆内存缓存数据。
  • 在反问历史状态和进行序列化操作之前,内存中聚合。
  • 也可以减轻下游的负载。

6.4 top n策略优化

实时计算中对数据全局排序代价是非常大的,但是计算top n还是比较容易实现的。

下面是计算每个类别,top n的策略,flink sql表达:

代码语言:javascript
复制
SELECT *
FROM (
  SELECT // you can get like shopld or other information from this
  ROW_NUMBER() OVER (PARTITION BY category ORDER BY sales DESC) AS rowNum
  FROM shop_sales
)
WHERE rowNum <= 3

具体实现实际上是重写了底层的执行计划,将OverAggregate操作替换为了一个rank操作。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-05-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 浪尖聊大数据 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
文件存储
文件存储(Cloud File Storage,CFS)为您提供安全可靠、可扩展的共享文件存储服务。文件存储可与腾讯云服务器、容器服务、批量计算等服务搭配使用,为多个计算节点提供容量和性能可弹性扩展的高性能共享存储。腾讯云文件存储的管理界面简单、易使用,可实现对现有应用的无缝集成;按实际用量付费,为您节约成本,简化 IT 运维工作。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档