前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度推荐模型——DIN [KDD 18][Alibaba]

深度推荐模型——DIN [KDD 18][Alibaba]

作者头像
小爷毛毛_卓寿杰
发布2021-03-22 11:40:11
3520
发布2021-03-22 11:40:11
举报
文章被收录于专栏:Soul Joy Hub
代码语言:javascript
复制
import tensorflow as tf
from tensorflow import keras
from utils import *

EPOCH = 10
BATCH_SIZE = 32
VEC_DIM = 10
DROPOUT_RATE = 0.5
HEAD_NUM = 4
HIDE_SIZE = 128
LAYER_NUM = 3
DNN_LAYERS = [200, 80]
data, max_user_id, max_item_id = load_data()
# 行为特征个数
BEHAVIOR_FEAT_NUM = 32
K = tf.keras.backend


def run():
    train_user_id_data, train_now_item_id_data, train_item_ids_data, train_rating_ids_data, train_y_data,\
    test_user_id_data, test_now_item_id_data, test_item_ids_data, test_rating_ids_data, test_y_data = get_all_data(data)

    user_id = keras.Input((1,))
    now_item_id = keras.Input((1,))
    items_ids = keras.Input((BEHAVIOR_FEAT_NUM,))
    ratings_ids = keras.Input((BEHAVIOR_FEAT_NUM,))

    usr_emb = keras.layers.Embedding(max_user_id + 1, VEC_DIM, input_length=1)(user_id)  # [-1,1,vec_dim]
    usr_emb = keras.layers.Flatten()(usr_emb)  # [-1,vec_dim]
    now_item_emb = keras.layers.Embedding(max_item_id + 1, VEC_DIM, input_length=1)(now_item_id)  # [-1,1,vec_dim]
    now_item_emb = keras.layers.Flatten()(now_item_emb)  # [-1,vec_dim]
    items_emb = keras.layers.Embedding(max_item_id + 1, VEC_DIM, input_length=BEHAVIOR_FEAT_NUM)(
        items_ids)  # [-1,BEA_FEAT_NUM,vec_dim]
    ratings_emb = keras.layers.Embedding(6, VEC_DIM, input_length=BEHAVIOR_FEAT_NUM)(
        ratings_ids)  # [-1,BEA_FEAT_NUM,vec_dim]
    behavior_emb = keras.layers.concatenate([items_emb, ratings_emb])  # [-1,BEA_FEAT_NUM, 2 * vec_dim]
    behavior_emb = tf.reduce_sum(behavior_emb, axis=1)  # [-1, 2 * vec_dim]

    deep = keras.layers.concatenate([usr_emb, now_item_emb, behavior_emb])

    for units in DNN_LAYERS:
        deep = keras.layers.Dense(units)(deep)
        deep = keras.layers.PReLU()(deep)
        deep = keras.layers.Dropout(DROPOUT_RATE)(deep)
    outputs = keras.layers.Dense(1, activation='sigmoid')(deep)

    model = keras.Model(inputs=[user_id, now_item_id, items_ids, ratings_ids], outputs=outputs)
    model.compile(loss='binary_crossentropy', optimizer=tf.train.AdamOptimizer(0.001), metrics=[keras.metrics.AUC()])
    tbCallBack = keras.callbacks.TensorBoard(log_dir='./logs',
                                             histogram_freq=0,
                                             write_graph=True,
                                             write_grads=True,
                                             write_images=True,
                                             embeddings_freq=0,
                                             embeddings_layer_names=None,
                                             embeddings_metadata=None)

    model.fit([train_user_id_data, train_now_item_id_data, train_item_ids_data, train_rating_ids_data], train_y_data,
              batch_size=BATCH_SIZE, epochs=EPOCH, verbose=2,
              validation_data=(
              [test_user_id_data, test_now_item_id_data, test_item_ids_data, test_rating_ids_data], test_y_data),
              callbacks=[tbCallBack])


run()
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021/02/15 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档