前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Kafka第二天笔记

Kafka第二天笔记

作者头像
Maynor
发布2021-04-09 15:49:28
3460
发布2021-04-09 15:49:28
举报
文章被收录于专栏:最新最全的大数据技术体系

文章目录

  • Kafka第二天课堂笔记
    • Kafka中的分区副本机制
      • 生产者的分区写入策略
      • 消费组Consumer Group Rebalance机制
      • 消费者的分区分配策略
      • 副本的ACK机制
      • 高级API(High-Level API)、低级API(Low-Level API)
    • Kafka原理
      • leader和follower
      • AR\ISR\OSR
      • leader选举
      • Kafka读写流程
      • Kafka的物理存储
      • 消息传递的语义性
      • Kafka的消息不丢失
      • 数据积压
      • 数据清理&配额限速

Kafka第二天课堂笔记

Kafka中的分区副本机制

生产者的分区写入策略

  • 轮询(按照消息尽量保证每个分区的负载)策略,消息会均匀地分布到每个partition
    • 写入消息的时候,key为null的时候,默认使用的是轮询策略
  • 随机策略(不使用)
  • 按key写入策略,key.hash() % 分区的数量
  • 自定义分区策略(类似于MapReduce指定分区)

乱序问题

  • 在Kafka中生产者是有写入策略,如果topic有多个分区,就会将数据分散在不同的partition中存储
  • 当partition数量大于1的时候,数据(消息)会打散分布在不同的partition中
  • 如果只有一个分区,消息是有序的

消费组Consumer Group Rebalance机制

  • 再均衡:在某些情况下,消费者组中的消费者消费的分区会产生变化,会导致消费者分配不均匀(例如:有两个消费者消费3个,因为某个partition崩溃了,还有一个消费者当前没有分区要削峰),Kafka Consumer Group就会启用rebalance机制,重新平衡这个Consumer Group内的消费者消费的分区分配。
  • 触发时机
    • 消费者数量发生变化
      • 某个消费者crash
      • 新增消费者
    • topic的数量发生变化
      • 某个topic被删除
    • partition的数量发生变化
      • 删除partition
      • 新增partition
  • 不良影响
    • 发生rebalance,所有的consumer将不再工作,共同来参与再均衡,直到每个消费者都已经被成功分配所需要消费的分区为止(rebalance结束)

消费者的分区分配策略

分区分配策略:保障每个消费者尽量能够均衡地消费分区的数据,不能出现某个消费者消费分区的数量特别多,某个消费者消费的分区特别少

  • Range分配策略(范围分配策略):Kafka默认的分配策略
    • n:分区的数量 / 消费者数量
    • m:分区的数量 % 消费者数量
    • 前m个消费者消费n+1个分区
    • 剩余的消费者消费n个分区
  • RoundRobin分配策略(轮询分配策略)
    • 消费者挨个分配消费的分区
  • Striky粘性分配策略
    • 在没有发生rebalance跟轮询分配策略是一致的
    • 发生了rebalance,轮询分配策略,重新走一遍轮询分配的过程。而粘性会保证跟上一次的尽量一致,只是将新的需要分配的分区,均匀的分配到现有可用的消费者中即可
    • 减少上下文的切换

副本的ACK机制

producer是不断地往Kafka中写入数据,写入数据会有一个返回结果,表示是否写入成功。这里对应有一个ACKs的配置。

  • acks = 0:生产者只管写入,不管是否写入成功,可能会数据丢失。性能是最好的
  • acks = 1:生产者会等到leader分区写入成功后,返回成功,接着发送下一条
  • acks = -1/all:确保消息写入到leader分区、还确保消息写入到对应副本都成功后,接着发送下一条,性能是最差的

根据业务情况来选择ack机制,是要求性能最高,一部分数据丢失影响不大,可以选择0/1。如果要求数据一定不能丢失,就得配置为-1/all。

分区中是有leader和follower的概念,为了确保消费者消费的数据是一致的,只能从分区leader去读写消息,follower做的事情就是同步数据,Backup。

高级API(High-Level API)、低级API(Low-Level API)

  • 高级API就是直接让Kafka帮助管理、处理分配、数据
    • offset存储在ZK中
    • 由kafka的rebalance来控制消费者分配的分区
    • 开发起来比较简单,无需开发者关注底层细节
    • 无法做到细粒度的控制
  • 低级API:由编写的程序自己控制逻辑
    • 自己来管理Offset,可以将offset存储在ZK、MySQL、Redis、HBase、Flink的状态存储
    • 指定消费者拉取某个分区的数据
    • 可以做到细粒度的控制
    • 原有的Kafka的策略会失效,需要我们自己来实现消费机制

Kafka原理

leader和follower

  • Kafka中的leader和follower是相对分区有意义,不是相对broker
  • Kafka在创建topic的时候,会尽量分配分区的leader在不同的broker中,其实就是负载均衡
  • leader职责:读写数据
  • follower职责:同步数据、参与选举(leader crash之后,会选举一个follower重新成为分区的leader
  • 注意和ZooKeeper区分
    • ZK的leader负责读、写,follower可以读取
    • Kafka的leader负责读写、follower不能读写数据(确保每个消费者消费的数据是一致的),Kafka一个topic有多个分区leader,一样可以实现数据操作的负载均衡

AR\ISR\OSR

  • AR表示一个topic下的所有副本
  • ISR:In Sync Replicas,正在同步的副本(可以理解为当前有几个follower是存活的)
  • OSR:Out of Sync Replicas,不再同步的副本
  • AR = ISR + OSR

leader选举

Kafka读写流程

  • 写流程
    • 通过ZooKeeper找partition对应的leader,leader是负责写的
    • producer开始写入数据
    • ISR里面的follower开始同步数据,并返回给leader ACK
    • 返回给producer ACK
  • 读流程
    • 通过ZooKeeper找partition对应的leader,leader是负责读的
    • 通过ZooKeeper找到消费者对应的offset
    • 然后开始从offset往后顺序拉取数据
    • 提交offset(自动提交——每隔多少秒提交一次offset、手动提交——放入到事务中提交)

Kafka的物理存储

  • Kafka的数据组织结构
    • topic
    • partition
    • segment
      • .log数据文件
      • .index(稀疏索引)
      • .timeindex(根据时间做的索引)
  • 深入了解读数据的流程
    • 消费者的offset是一个针对partition全局offset
    • 可以根据这个offset找到segment段
    • 接着需要将全局的offset转换成segment的局部offset
    • 根据局部的offset,就可以从(.index稀疏索引)找到对应的数据位置
    • 开始顺序读取

消息传递的语义性

Flink里面有对应的每种不同机制的保证,提供Exactly-Once保障(二阶段事务提交方式)

  • At-most once:最多一次(只管把数据消费到,不管有没有成功,可能会有数据丢失)
  • At-least once:最少一次(有可能会出现重复消费)
  • Exactly-Once:仅有一次(事务性性的保障,保证消息有且仅被处理一次)

Kafka的消息不丢失

  • broker消息不丢失:因为有副本relicas的存在,会不断地从leader中同步副本,所以,一个broker crash,不会导致数据丢失,除非是只有一个副本。
  • 生产者消息不丢失:ACK机制(配置成ALL/-1)、配置0或者1有可能会存在丢失
  • 消费者消费不丢失:重点控制offset
    • At-least once:一种数据可能会重复消费
    • Exactly-Once:仅被一次消费

数据积压

  • 数据积压指的是消费者因为有一些外部的IO、一些比较耗时的操作(Full GC——Stop the world),就会造成消息在partition中一直存在得不到消费,就会产生数据积压
  • 在企业中,我们要有监控系统,如果出现这种情况,需要尽快处理。虽然后续的Spark Streaming/Flink可以实现背压机制,但是数据累积太多一定对实时系统它的实时性是有说影响的

数据清理&配额限速

  • 数据清理
    • Log Deletion(日志删除):如果消息达到一定的条件(时间、日志大小、offset大小),Kafka就会自动将日志设置为待删除(segment端的后缀名会以 .delete结尾),日志管理程序会定期清理这些日志
      • 默认是7天过期
    • Log Compaction(日志合并)
      • 如果在一些key-value数据中,一个key可以对应多个不同版本的value
      • 经过日志合并,就会只保留最新的一个版本
  • 配额限速
    • 可以限制Producer、Consumer的速率
    • 防止Kafka的速度过快,占用整个服务器(broker)的所有IO资源
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021/03/27 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 文章目录
  • Kafka第二天课堂笔记
    • Kafka中的分区副本机制
      • 生产者的分区写入策略
      • 消费组Consumer Group Rebalance机制
      • 消费者的分区分配策略
      • 副本的ACK机制
      • 高级API(High-Level API)、低级API(Low-Level API)
    • Kafka原理
      • leader和follower
      • AR\ISR\OSR
      • leader选举
      • Kafka读写流程
      • Kafka的物理存储
      • 消息传递的语义性
      • Kafka的消息不丢失
      • 数据积压
      • 数据清理&配额限速
相关产品与服务
负载均衡
负载均衡(Cloud Load Balancer,CLB)提供安全快捷的四七层流量分发服务,访问流量经由 CLB 可以自动分配到多台后端服务器上,扩展系统的服务能力并消除单点故障。轻松应对大流量访问场景。 网关负载均衡(Gateway Load Balancer,GWLB)是运行在网络层的负载均衡。通过 GWLB 可以帮助客户部署、扩展和管理第三方虚拟设备,操作简单,安全性强。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档