前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >请你讲讲分布式系统中的限流器一般如何实现?

请你讲讲分布式系统中的限流器一般如何实现?

作者头像
干货满满张哈希
发布2021-04-12 11:05:01
4790
发布2021-04-12 11:05:01
举报
文章被收录于专栏:干货满满张哈希

限流器相关算法

一般限流器有五种算法,分别是:令牌桶,漏斗桶,固定窗口,滑动日志(指的其实是广义上的滑动窗口),滑动窗口(这里指的是滑动日志+固定窗口结合的一种算法)。

1. 令牌桶(Token bucket)

令牌桶算法用来控制一段时间内发送到网络上的数据的数目,并允许突发数据的发送。

算法大概是: 假设允许的请求速率为r次每秒,那么每过1/r秒就会向桶里面添加一个令牌。桶的最大大小是b。当一个大小为n的请求到来时,检查桶内令牌数是否足够,如果足够,令牌数减少n,请求通过。不够的话就会触发拒绝策略。

令牌桶有一个固定大小,假设每一个请求也有一个大小,当要检查请求是否符合定义的限制时,会检查桶,以确定它当时是否包含足够的令牌。如果有,那么会移除掉这些令牌,请求通过。否则,会采取其他操作,一般是拒绝。令牌桶中的令牌会以一定速率恢复,这个速率就是允许请求的速率(当然,根据大小的配置,可能实际会超过这个速率,但是随着令牌桶的消耗会被调整回这个恢复速率)。

如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。可以看出,令牌桶在保持整体上的请求速率的同时,允许某种程度的突发传输。

分布式环境下的令牌桶的实现需要考虑如下几个问题:

  1. 令牌桶当前大小究竟如何存储?是只存储一个当前令牌桶的大小(例如通过 redis 的一个键值对存储),还是存放每个通过的请求到来的时间戳(例如通过 redis 的 zset 实现,zset 的大小就是桶的最大大小)?
  2. 令牌桶的令牌补充是由谁补充?对于存储一个当前令牌桶的大小的实现方式,需要一个进程以速率r不断地往里面添加令牌,那么如何在分布式的环境下保证有且只有一个这样的进程,这个进程挂了怎么办?对于存放每个通过的请求到来的时间戳的这种实现方式实现,那么怎么控制记录请求的个数,肯定不能每个都记录,并且每次怎么通过目前的请求以及时间戳来判断剩余令牌数量
2. 漏斗桶(Leaky bucket)

漏斗桶控制请求必须在最大某个速率被消费,就像一个漏斗一样,入水量可大可小,但是最大速率只能到某一量值,不会像令牌桶一样,会有小的尖峰。

算法大概是: 主要实现方式是通过一个 FIFO (First in first out)的队列实现,这个队列是一个有界队列,大小为b,如果请求堆积满了队列,就会触发丢弃策略。假设允许的请求速率为r次每秒,那么这个队列中的请求,就会以这个速率进行消费。

分布式环境下的漏桶的实现需要考虑如下几个问题:

**1. 漏桶的队列,怎么存放?**这个队列需要存放每个通过的请求以及对应的消费的时间戳,保证消费的平稳。同时,这个队列最好是无锁队列,因为会有分布式锁征用。并且,这个队列大小应该设置为b,并每次有请求到来时,放入队列的同时清理队列。 **2. 消费如何实现?**也就是存入队列的请求,如何消费呢?可以请求到来时,通过队列中的请求来判断当前这个请求的执行时间应该是多久以后,之后入队列,延迟这么久再执行这个请求。也可以利用本身带延迟时间实现的队列来实现。

3. 固定时间窗口(Fixed window)

固定时间窗口比较简单,就是将时间切分成若干个时间片,每个时间片内固定处理若干个请求。这种实现不是非常严谨,但是由于实现简单,适用于一些要求不严格的场景。

算法大概是: 假设n秒内最多处理b个请求,那么每隔n秒将计数器重置为b。请求到来时,如果计数器值足够,则扣除并请求通过,不够则触发拒绝策略。

固定时间窗口是最容易实现的算法,但是也是有明显的缺陷:那就是在很多情况下,尤其是请求限流后拒绝策略为排队的情况下,请求都在时间窗口的开头被迅速消耗,剩下的时间不处理任何请求,这是不太可取的。并且,在一些极限情况下,实际上的流量速度可能达到限流的 2 倍。例如限制 1 秒内最多 100 个请求。假设 0.99 秒的时候 100 个请求到了,之后 1.01 秒的时候又有 100 个请求到了,这样的话其实在 0.99 秒 ~ 1.01 秒这一段时间内有 200 个请求,并不是严格意义上的每一秒都只处理 100 个请求。为了能实现严格意义上的请求限流,则有了后面两种算法。

4. 滑动日志(Sliding Log)

滑动日志根据缓存之前接受请求对应的时间戳,与当前请求的时间戳进行计算,控制速率。这样可以严格限制请求速率。一般的网上提到的滑动窗口算法也指的是这里的滑动日志(Sliding Log)算法,但是我们这里的滑动窗口是另一种优化的算法,待会会提到

算法大概是: 假设n秒内最多处理b个请求。那么会最多缓存 b 个通过的请求与对应的时间戳,假设这个缓存集合为B。每当有请求到来时,从B中删除掉n秒前的所有请求,查看集合是否满了,如果没满,则通过请求,并放入集合,如果满了就触发拒绝策略。

分布式环境下的滑动日志的实现需要考虑如下几个问题:

  1. 我们的算法其实已经简化了存储,但是对于高并发的场景,要缓存的请求可能会很多(例如限制每秒十万的请求,那么这个缓存的大小是否就应该能存储十万个请求?),这个缓存应该如何实现?
  2. 高并发场景下,对于这个集合的删除掉n秒前的所有请求的这个操作,需要速度非常快。如果你的缓存集合实现对于按照时间戳删除这个操作比较慢,可以缓存多一点请求,定时清理删除n秒前的所有请求而不是每次请求到来都删除。请求到来的时候,查看b个之前的请求是否存在并且时间差小于n秒,存在并且小于代表应该触发限流策略。
5. 滑动窗口(滑动日志 + 固定窗口)

前面的滑动日志,我们提到了一个问题 - 要缓存的请求可能会很多。也许在我们的架构内不能使用一个恰当的缓存来实现,我们可以通过滑动窗口这个方法来减少要存储的请求数量,并减少集合大小减少同一个集合上面的并发。

算法大概是: 假设n秒内最多处理b个请求。我们可以将n秒切分成每个大小为m毫秒得时间片,只有最新的时间片内缓存请求和时间戳,之前的时间片内只保留一个请求量的数字。这样可以大大优化存储,小幅度增加计算量。对于临界条件,就是之前已经有了n/m个时间片,计算n秒内请求量时可以计算当前时间片内经过时间的百分比,假设是 25%,那么就取开头的第一个时间片的请求量的 75% 进行计算。

每日一刷,轻松提升技术,斩获各种offer:

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021/02/01 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 限流器相关算法
    • 1. 令牌桶(Token bucket)
      • 2. 漏斗桶(Leaky bucket)
        • 3. 固定时间窗口(Fixed window)
          • 4. 滑动日志(Sliding Log)
            • 5. 滑动窗口(滑动日志 + 固定窗口)
            相关产品与服务
            对象存储
            对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档