前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深入浅出ConcurrentHashMap内部实现

深入浅出ConcurrentHashMap内部实现

作者头像
敖丙
发布2021-04-29 10:11:26
5590
发布2021-04-29 10:11:26
举报
文章被收录于专栏:三太子敖丙三太子敖丙

ConcurrentHashMap可以说是目前使用最多的并发数据结构之一,作为如此核心的基本组件,不仅仅要满足我们功能的需求,更要满足性能的需求。而实现一个高性能的线程安全的HashMap也绝非易事。

ConcurrentHashMap作为JDK8的内部实现,一个成功的典范,有着诸多可以让我们学习和致敬的地方。

我全局在项目中搜索这个类的时候,发现大量项目代码和源码都用到了,为什么他会这么吃香呢?到底是道德的....呸。

下面我们就来扒一扒,ConcurrentHashMap的内部实现,来体会一下它的精妙之处吧!

ConcurrentHashMap的内部数据结构

在JDK8中, ConcurrentHashMap的内部实现发生了天翻地覆的变化。这里依据JDK8,来介绍一下ConcurrentHashMap的内部实现。

从静态数据结构上说,ConcurrentHashMap包含以下内容:

int sizeCtl

这是一个多功能的字段,可以用来记录参与Map扩展的线程数量,也用来记录新的table的扩容阈值

CounterCell[] counterCells

用来记录元素的个数,这是一个数组,使用数组来记录,是因为避免多线程竞争时,可能产生的冲突。使用了数组,那么多个线程同时修改数量时,极有可能实际操作数组中不同的单元,从而减少竞争。

Node<K,V>[] table

实际存放Map内容的地方,一个map实际上就是一个Node数组,每个Node里包含了key和value的信息。

Node<K,V>[] nextTable

当table需要扩充时,会把新的数据填充到nextTable中,也就是说nextTable是扩充后的Map。

以上就是ConcurrentHashMap的核心元素,其中最值得注意的便是Node,Node并非想象中如此简单,下面的图展示了Node的类族结构:

可以看到,在Map中的Node并非简单的Node对象,实际上,它有可能是Node对象,也有可能是一个Treebin或者ForwardingNode。

那什么时候是Node,什么时候是TreeBin,什么时候又是一个ForwardingNode呢?

其实在绝大部分场景中,使用的依然是Node,从Node数据结构中,不难看出,Node其实是一个链表,也就是说,一个正常的Map可能是长这样的:

上图中,绿色部分表示Node数组,里面的元素是Node,也就是链表的头部,当两个元素在数据中的位置发生冲突时,就将它们通过链表的形式,放在一个槽位中。

当数组槽位对应的是一个链表时,在一个链表中查找key只能使用简单的遍历,这在数据不多时,还是可以接受的,当冲突数据比较多少,这种简单的遍历就有点慢了。

因此,在具体实现中,当链表的长度大于等于8时,会将链表树状化,也就是变成一颗红黑树。如下图所示,其中一个槽位就变成了一颗树,这就是TreeBin(在TreeBin中使用TreeNode构造整科树)。

当数组容量快满时,即超过75%的容量时,数组还需要进行扩容,在扩容过程中,如果老的数组已经完成了复制,那么就会将老数组中的元素使用ForwardingNode对象替代,表示当前槽位的数据已经处理了,不需要再处理了,这样,当有多个线程同时参与扩容时,就不会冲突。

put()方法的实现

现在来看一下作为一个HashMap最为重要的方法put():

  • public V put(K key, V value)

它负责将给定的key和value对存入HashMap,它的工作主要有以下几个步骤:

  1. 如果没有初始化数组,则尝试初始化数组
  2. 如果当前正在扩容,则参与帮助扩容(调用helpTransfer()方法)
  3. 将给定的key,value 放入对应的槽位
  4. 统计元素总数
  5. 触发扩容操作

根据以上主要4个步骤,来依次详细说明一下:

如果没有初始化数组,则尝试初始化数组

初始化数据会生成一个Node数组:

代码语言:javascript
复制
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];

默认情况下,n为16。同时设置sizeCtl为·n - (n >>> 2); 这意味着sizeCtl为n的75%,表示Map的size,也就是说ConcurrentHashMap的负载因子是0.75。(为了避免冲突,Map的容量是数组的75%,超过这个阈值,就会扩容)

如果当前正在扩容,则参与帮助扩容
代码语言:javascript
复制
else if ((fh = f.hash) == MOVED)
    tab = helpTransfer(tab, f);

如果一个节点的hash是MOVE,则表示这是一个ForwardingNode,也就是当前正在扩容中,为了尽快完成扩容,当前线程就会参与到扩容的工作中,而不是等待扩容操作完成,如此紧密细致的操作,恰恰是ConcurrentHashMap高性能的原因。

而代码中的f.hash==MOVE语义上等同于f instanceof ForwardingNode,但是使用整数相等的判断的效率要远远高于instanceof,所以,这里也是一处对性能的极限优化。

将给定的key,value 放入对应的槽位

在大部分情况下,应该会走到这一步,也就是将key和value放入数组中。在这个操作中会使用大概如下操作:

代码语言:javascript
复制
Node<K,V> f;
synchronized (f) {
     if(所在槽位是一个链表)
         插入链表
     else if(所在槽位是红黑树)
         插入树
     if(链表长度大于8[TREEIFY_THRESHOLD])
         将链表树状化
}

可以看到,这使用了synchronized关键字,锁住了Node对象。由于在绝大部分情况下,不同线程大概率会操作不同的Node,因此这里的竞争应该不会太大。

并且随着数组规模越来越大,竞争的概率会越来越小,因此ConcurrentHashMap有了极好的并行性。

统计元素总数

为了有一个高性能的size()方法,ConcurrentHashMap使用了单独的方法来统计元素总数,元素数量统计在CounterCell数组中:

代码语言:javascript
复制
CounterCell[] counterCells;
@sun.misc.Contended static final class CounterCell {
    volatile long value;
    CounterCell(long x) { value = x; }
}

CounterCell使用伪共享优化,具有很高的读写性能。counterCells中所有的成员的value相加,就是整个Map的大小。这里使用数组,也是为了防止冲突。

如果简单使用一个变量,那么多线程累加一个计数器时,难免要有竞争,现在分散到一个数组中,这种竞争就小了很多,对并发就更加友好了。

累加的主要逻辑如下:

代码语言:javascript
复制
if (as == null || (m = as.length - 1) < 0 ||
    //不同线程映射到不同的数组元素,防止冲突
    (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
    //使用CAS直接增加对应的数据
    !(uncontended =
      U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)))
    //如果有竞争,在这里会重试,如果竞争严重还会将CounterCell[]数组扩容,以减少竞争

触发扩容操作

最后,ConcurrentHashMap还会检查是否需要扩容,它会检查当前Map的大小是否超过了阈值,如果超过了,还会进行扩容。

ConcurrentHashMap的扩容过程非常巧妙,它并没有完全打乱当前已有的元素位置,而是在数组扩容2倍后,将一半的元素移动到新的空间中。

所有的元素根据高位是否为1分为low节点和high节点:

代码语言:javascript
复制
//n是数组长度,数组长度是2的幂次方,因此一定是100 1000 10000 100000这种二进制数字
//这里将low节点串一起, high节点串一起
if ((ph & n) == 0)
    ln = new Node<K,V>(ph, pk, pv, ln);
else
    hn = new Node<K,V>(ph, pk, pv, hn);

接着,重新放置这些元素的位置:

代码语言:javascript
复制
//low节点留在当前位置
setTabAt(nextTab, i, ln);
//high节点放到扩容后的新位置,新位置距离老位置n
setTabAt(nextTab, i + n, hn);
//扩容完成,用ForwardingNode填充
setTabAt(tab, i, fwd);

下图显示了 从8扩充到16时的可能得一种扩容情况,注意,新的位置总是在老位置的后面n个槽位(n为原数组大小)

这样做的好处是,每个元素的位置不需要重新计算,进行查找时,由于总是会对n-1(一定是一个类似于1111 11111 111111这样的二进制数)按位与,因此,high类的节点自然就会出现在+n的位置上。

get()方法的实现

与put()方法相比,get()方法就比较简单了。步骤如下:

  1. 根据hash值 得到对应的槽位 (n - 1) & h
  2. 如果当前槽位第一个元素key就和请求的一样,直接返回
  3. 否则调用Node的find()方法查找
    1. 对于ForwardingNode 使用的是 ForwardingNode.find()
    2. 对于红黑树 使用的是TreeBin.find()
  4. 对于链表型的槽位,依次顺序查找对应的key

写在最后

ConcurrentHashMap可以说是并发设计的典范,在JDK8中,ConcurrentHashMap可以说是再一次脱胎换骨,全新的架构和实现带来了飞一般的体验(JDK7中的ConcurrentHashMap还是采用比较骨板的segment实现的),细细品读,还是有不少的收获。

他和HashMap的区别,优劣势对比,这也是常考的考点,所以大家不管是为了了解、工作还是面试,都应该好好的熟悉一下。

多线程系列我会继续更新,我是敖丙,你知道的越多,你不知道的越多,我们江湖见。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-04-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 敖丙 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • ConcurrentHashMap的内部数据结构
    • int sizeCtl
      • CounterCell[] counterCells
      • Node<K,V>[] table
    • Node<K,V>[] nextTable
      • put()方法的实现
    • 统计元素总数
      • 触发扩容操作
        • get()方法的实现
    • 写在最后
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档