专栏首页算法channelNumPy 索引和切片 用法总结

NumPy 索引和切片 用法总结

你好,我是zhenguo

参考NumPy官方文档,总结NumPy索引和切片,可以看到它们相比Python更加方便、简介和强大。

索引和切片

您可以使用与切片 Python列表相同的方法,对NumPy数组进行索引和切片。

>>> data = np.array([1, 2, 3])

>>> data[1]
2
>>> data[0:2]
array([1, 2])
>>> data[1:]
array([2, 3])
>>> data[-2:]
array([2, 3])

你可以这样想象:

您可能需要获取数组的一部分或特定数组元素,以便在进一步分析或其他操作中使用。为此,需要对数组进行子集、切片和/或索引。

如果您想从数组中选择满足特定条件的值,那么NumPy很简单。

例如,如果从这个数组开始:

>>> a = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

可以轻松打印数组中小于5的所有值。

>>> print(a[a < 5])
[1 2 3 4]

例如,还可以选择等于或大于5的数字,并使用该条件对数组进行索引。

>>> five_up = (a >= 5)
>>> print(a[five_up])
[ 5  6  7  8  9 10 11 12]

可以选择可被2整除的元素:

>>> divisible_by_2 = a[a%2==0]
>>> print(divisible_by_2)
[ 2  4  6  8 10 12]

或者可以使用&|运算符选择满足两个条件的元素:

>>> c = a[(a > 2) & (a < 11)]
>>> print(c)
[ 3  4  5  6  7  8  9 10]

还可以使用逻辑运算符&|返回布尔值,指定数组中的值是否满足特定条件。这对于包含名称或其他分类值的数组很有用。

>>> five_up = (a > 5) | (a == 5)
>>> print(five_up)
[[False False False False]
 [ True  True  True  True]
 [ True  True  True True]]

还可以使用np.nonzero()从数组中选择元素或索引。

从这个数组开始:

>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

可以使用np.nonzero()打印元素的索引,例如,小于5:

>>> b = np.nonzero(a < 5)
>>> print(b)
(array([0, 0, 0, 0]), array([0, 1, 2, 3]))

在本例中,返回了一个数组元组:每个维度一个。第一个数组表示找到这些值的行索引,第二个数组表示找到这些值的列索引。

如果要生成元素所在的坐标列表,可以压缩数组,遍历坐标列表,然后打印它们。例如:

>>> list_of_coordinates= list(zip(b[0], b[1]))

>>> for coord in list_of_coordinates:
...     print(coord)
(0, 0)
(0, 1)
(0, 2)
(0, 3)

还可以使用np.nonzero()打印数组中小于5的元素,并使用:

>>> print(a[b])
[1 2 3 4]

如果要查找的元素在数组中不存在,则返回的索引数组将为空。例如:

>>> not_there = np.nonzero(a == 42)
>>> print(not_there)
(array([], dtype=int64), array([], dtype=int64))

NumPy系列教程,点击http://www.zglg.work/numpy/numpy-indexing-slicing/,学习更多:

  • NumPy介绍
  • 安装和导入NumPy
  • Python列表和NumPy数组有什么区别?
  • 什么是array?
  • 有关Array的详细信息
  • 如何创建array
  • 添加、删除和排序元素
  • 数组形状和大小
  • 重塑array
  • 如何将一维array转换为二维array(如何向数组添加新轴)
  • NumPy索引和切片

本文分享自微信公众号 - Python与机器学习算法频道(alg-channel),作者:zhenguo

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2021-05-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 初探numpy——切片和索引

    LRainner
  • numpy入门-索引、切片和迭代

    皮大大
  • Numpy 修炼之道 (5)—— 索引和切片

    Python 中原生的数组就支持使用方括号([])进行索引和切片操作,Numpy 自然不会放过这个强大的特性。

    abs_zero
  • 手撕numpy(三):切片和索引详解

    注意:上述两个切片是否存在问题,假如不存在,结果又是什么?如果你能回答正确这两个问题,python切片,就没有问题了。

    朱小五
  • 【NumPy学习指南】day4 多维数组的切片和索引

    ndarray支持在多维数组上的切片操作。为了方便起见,我们可以用一个省略号(...)来

    统计学家
  • 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组。...

    公众号---人生代码
  • 在Python机器学习中如何索引、切片和重塑NumPy数组

    在Python中,数据几乎被普遍表示为NumPy数组。

    用户9527
  • Python数据科学手册(四)【Pandas 索引和选择】

    前面我们介绍了Numpy的索引和选择操作,Pandas也具有类似的操作,这节我们将介绍Pandas对象的索引和选择操作。

    用户2936342
  • 盘一盘 Python 系列 2 - NumPy (上)

    Numpy 是 Python 专门处理高维数组 (high dimensional array) 的计算的包,每次使用它遇到问题都会它的官网 (www.nump...

    代码医生工作室

扫码关注云+社区

领取腾讯云代金券