前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >NVIDIA Jetson NANO 2GB: DeepStream 初体验

NVIDIA Jetson NANO 2GB: DeepStream 初体验

作者头像
GPUS Lady
发布2021-08-03 14:48:59
9100
发布2021-08-03 14:48:59
举报
文章被收录于专栏:GPUS开发者GPUS开发者

前一篇文章为大家讲述了 DeepStream 的应用定位、单机工作流、实际部署图,以及完整的软件栈的内容,可以对其有一个框架性的了解。接下来大家可以思考一下,DeepStream 可以开发什么应用?

可能有人会猜想,这么强大且复杂的视频分析工具,一定需要具备很多的专业知识与编程语言基础,才有可能操作这样一套系统。

的确,如果要实现完整的视频分析中心的整体部署,确实需要更多的技术去完成;但如果只想做些轻便的单机应用,例如自己家中或办公环境的视频分析应用,那就非常地简单,甚至不需要撰写或修改代码就能实现。

本文的内容,就是用 NVIDIA Jetson Nano 2GB 快速带大家来执行 NVIDIA 为 DeepStream 已经提供好的应用,整个执行流程也适用于 Jetson 系列的所有设备,当然,也能在带有 CUDA GPU 计算卡的 x86 设备上运作。

这里的运作环境是用 NVIDIA Jetpack 4.5.0 安装,关于操作系统、CUDA、CUDNN、TensorRT、OpenCV 等版本,请自行参考 NVIDIA 官方所提供的说明内容。

Jetpack 会为 Jetson 设备直接安装好 DeepStream 套件,因此 Jetson 用户可以省略 DeepStream 的安装步骤,进入 Jetson 设备之后,执行以下指令就可以检查其版本:

# 在 Jetson 设备$ dpkg -l deepstream-5.0

会看到如下截图的信息,表示目前安装的版本为“5.0.1-1”!

接下来看看 Deepstream 为系统提供哪些可执行的软件?请执行以下指令:

$ deepstream-(连续敲击两次“Tab”键)

会看到如下截图,总共有20个可执行工具,我们只需要 deepstream-app 这个工具,其余可以不用理会。

在/opt/nvidia/deepstream/deepstream 路径下安装 DeepStream,后面的实验操作以这下面的 samples 目录里的内容为主,为了方便操作起见,请执行以下指令,在主目录执行建立一个链接:

$ cd ~$ ln -s /opt/nvidia/deepstream/deepstream/samples ds5_samples

现在执行以下指令,看看 samples 里的目录结构,对 DeepStream 范例能多一份总体观:

$ tree -L 2 -d ds5_samples

下图框处是本次实验有关的部分:

本次实验使用 deepstream-app 这个编译好的工具,执行时只要在后面添加”-c <配置文件>“即可,要做的任务就是修改配置文件的内容,便可以轻松地改变实现的功能。配置文件的范例存放在 config/deepstream-app 目录下,有 9 个“source”带头的范例文件可以使用,根据文件名可以看出该文件的适用设备。

source8_1080p_dec_infer-resnet_tracker_tiled_display_fp16_nano.txt 这个配置文件比较适合 Jetson Nano 2GB 使用,先简单分解一下文件名所代表的意义:

  • source8:有 8 个输入源
  • 1080p:输入源的最高分辨率
  • dec:检测器 detector 的缩写,表示这个设定文件是做物件检测功能
  • infer-resnet:使用 ResNet 这个神经网络执行推理功能
  • tracker:启用“物件追踪”功能
  • tiled_display:启用“并列显示”功能
  • fp16:推理时的数据精度
  • nano:针对 Nano 设备

这些文件名只是比较有针对性地提供预设参数而已,里面的每一个参数都是可以任意修改的。为了方便后面的执行,因此建议将配置文件复制成一个比较短的文件名:

$ sudo chmod 777 -R ds5_samples$ cd ds5_samples/configs/deepstream-app$ cp source8_1080p_dec_infer-resnet_tracker_tiled_display_fp16_nano.txt myNano.txt

后面所有的修改在 myNano.txt 里面执行就可以。现在执行以下指令,看看会得到什么结果:

$ deepstream-app -c myNano.txt

第一次执行时要为神经网络模型生成 TensorRT 加速引擎,所以需要几分钟时间去建立,正常运行会看到下图的显示,出现 2x4 个并列显示框。

下面是指令框显示的个别推理性能,8 个框的总性能合计大约在 120FPS,这对 JetsonNano 2GB 来说是非常惊人的。

如果使用 NoMachine 远程控制 Jetson Nano 2GB,可能会看不到显示的画面,这时请先按 Ctrl-C 退出执行,然后修改 myNano.txt 里面的[sink0]两个参数,如下:

。。。。。[sink0]#type=5type=2#sync=1sync=0。。。。。

然后重新执行“deepstream-app -c myNano.txt”应该就能看到显示的结果了。

这个标准演示一个较明显的问题就是 8 个框的数据源是相同的,这是否存在不真实的部分?因此修改一下输入来源的部分,调用从 DeepStream 与 VisionWorks 所提供的测试视频来执行“多视频”分析功能。

接下来在 myNano.txt 中做些小幅度的修改:

1. 为了让显示的尺寸更加合理化,修改[tiled-display]下面的 rows=2, columns=2

2. 以[source0]为范本,删除不需要的参数,复制为[source1]、[source2]、[source3]

这里特别使用不同格式的视频,包括.mp4、.h264、.avi等。存好修改内容后重新执行“deepstream-app -c myNano.txt”,就会看到如下的四个不同视频的推理结果,其中红色的代表“Car”、蓝色代表“Person”。

请自行查看一下命令框里,四组推理性能总和与前面八组推理性能的总合是否符合

玩转 DeepStream 就是这么简单,到目前为止完全没有牵涉任何的代码,只是修改一些参数就能实现多数据源的高性能识别,现在可以去向朋友炫耀了!

“目标追踪(track)”功能是推理识别的后处理任务,为识别出的物件标上编号之后,就能进行更多样化的后续操作,包括统计人流、动向分析、目标锁定等等,这个功能需要相对复杂的算法来支撑。

DeepStream 已经将“目标追踪”功能都封装好,只需在配置文件中做些简单处理,这就是下一篇文章要带大家执行的任务。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-07-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 GPUS开发者 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档