前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >用Spark-Scala训练LightGBM模型

用Spark-Scala训练LightGBM模型

作者头像
lyhue1991
发布2021-08-06 11:50:32
1.7K0
发布2021-08-06 11:50:32
举报

今日表情 ?

Spark-scala 可以使用LightGBM模型,既可以进行分布式训练,也可以进行分布式预测,支持各种参数设置。

支持模型保存,并且保存后的模型和Python等语言是可以相互调用的。

需要注意的是,Spark-scala训练LightGBM模型时, 输入模型的训练数据集需要处理成一个DataFrame,用spark.ml.feature.VectorAssembler将多列特征转换成一个 features向量列,label作为另外一列。

一,环境配置

spark-scala要使用lightgbm模型,pom文件中要配置如下依赖。

代码语言:javascript
复制
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_${scala.version}</artifactId>
<version>${spark.version}</version>
<!--spark-ml要去掉pmml-model依赖-->
<exclusions>
    <exclusion>
        <groupId>org.jpmml</groupId>
        <artifactId>pmml-model</artifactId>
    </exclusion>
</exclusions>
</dependency>

<dependency>
    <groupId>org.jpmml</groupId>
    <artifactId>jpmml-sparkml</artifactId>
    <version>1.3.4</version>
</dependency>
<dependency>
    <groupId>org.jpmml</groupId>
    <artifactId>jpmml-lightgbm</artifactId>
    <version>1.3.4</version>
</dependency>

二,范例代码

下面我们以二分类问题为例,按照如下几个大家熟悉的步骤进行范例代码演示。

  • 1,准备数据
  • 2,定义模型
  • 3,训练模型
  • 4,评估模型
  • 5,使用模型
  • 6,保存模型
代码语言:javascript
复制
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType, IntegerType}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.attribute.Attribute
import org.apache.spark.ml.feature.{IndexToString, StringIndexer}
import com.microsoft.ml.spark.{lightgbm=>lgb}
import com.google.gson.{JsonObject, JsonParser}
import scala.collection.JavaConverters._

object LgbDemo extends Serializable {
    
    def printlog(info:String): Unit ={
        val dt = new java.text.SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new java.util.Date)
        println("=========="*8+dt)
        println(info+"\n")
    }
    
    def main(args:Array[String]):Unit= {


    /*================================================================================*/
    //  一,加载数据
    /*================================================================================*/
    printlog("step1: preparing data ...")

    //加载数据
    val spark = SparkSession.builder().getOrCreate()
    val dfdata_raw = spark.read.option("header","true")
        .option("delimiter", "\t")
        .option("inferschema", "true")
        .option("nullValue","")
        .csv("data/breast_cancer.csv")

    dfdata_raw.sample(false,0.1,1).printSchema 

    //将特征组合成features向量
    val feature_cols = dfdata_raw.columns.filter(!Array("label").contains(_)) 
    val cate_cols = Array("mean_radius","mean_texture") 


    val vectorAssembler = new VectorAssembler().
      setInputCols(feature_cols).
      setOutputCol("features")

    val dfdata = vectorAssembler.transform(dfdata_raw).select("features", "label")
    val Array(dftrain,dfval)  = dfdata.randomSplit(Array(0.7, .3), 666)

    //各个特征的名字存储在了schema 的 metadata中了, 所以可以用特征名指定类别特征 
    println(dfdata.schema("features").metadata)
    dfdata.show(10) 

    /*================================================================================*/
    //  二,定义模型
    /*================================================================================*/
    printlog("step2: defining model ...")

    val lgbclassifier = new lgb.LightGBMClassifier()
      .setNumIterations(100)
      .setLearningRate(0.1)
      .setNumLeaves(31)
      .setMinSumHessianInLeaf(0.001)
      .setMaxDepth(-1)
      .setBoostFromAverage(false)
      .setFeatureFraction(1.0)
      .setMaxBin(255)
      .setLambdaL1(0.0)
      .setLambdaL2(0.0)
      .setBaggingFraction(1.0)
      .setBaggingFreq(0)
      .setBaggingSeed(1)
      .setBoostingType("gbdt") //rf、dart、goss
      .setCategoricalSlotNames(cate_cols)
      .setObjective("binary") //binary, multiclass
      .setFeaturesCol("features") 
      .setLabelCol("label")

    println(lgbclassifier.explainParams) 


    /*================================================================================*/
    //  三,训练模型
    /*================================================================================*/
    printlog("step3: training model ...")

    val lgbmodel = lgbclassifier.fit(dftrain)

    val feature_importances = lgbmodel.getFeatureImportances("gain")
    val arr = feature_cols.zip(feature_importances).sortBy[Double](t=> -t._2)
    val dfimportance = spark.createDataFrame(arr).toDF("feature_name","feature_importance(gain)")

    dfimportance.show(100)


    /*================================================================================*/
    //  四,评估模型
    /*================================================================================*/
    printlog("step4: evaluating model ...")

    val evaluator = new BinaryClassificationEvaluator()
      .setLabelCol("label")
      .setRawPredictionCol("rawPrediction")
      .setMetricName("areaUnderROC")

    val dftrain_result = lgbmodel.transform(dftrain)
    val dfval_result = lgbmodel.transform(dfval)

    val train_auc  = evaluator.evaluate(dftrain_result)
    val val_auc = evaluator.evaluate(dfval_result)
    println(s"train_auc = ${train_auc}")
    println(s"val_auc = ${val_auc}")


    /*================================================================================*/
    //  五,使用模型
    /*================================================================================*/
    printlog("step5: using model ...")

    //批量预测
    val dfpredict = lgbmodel.transform(dfval)
    dfpredict.sample(false,0.1,1).show(20)

    //对单个样本进行预测
    val features = dfval.head().getAs[Vector]("features")
    val single_result = lgbmodel.predict(features)

    println(single_result)


    /*================================================================================*/
    //  六,保存模型
    /*================================================================================*/
    printlog("step6: saving model ...")

    //保存到集群,多文件
    lgbmodel.write.overwrite().save("lgbmodel.model")
    //加载集群模型
    println("load model ...")
    val lgbmodel_loaded = lgb.LightGBMClassificationModel.load("lgbmodel.model")
    val dfresult = lgbmodel_loaded.transform(dfval)
    dfresult.show() 

    //保存到本地,单文件,和Python接口兼容
    //lgbmodel.saveNativeModel("lgb_model",true)
    //加载本地模型
    //val lgbmodel_loaded = LightGBMClassificationModel.loadNativeModelFromFile("lgb_model")
    
    }
    
}

三,输出参考

运行如上代码之后,可以得到如下输出。

注意 println(lgbclassifier.explainParams)可以获取LightGBM模型各个参数的含义以及默认值。

代码语言:javascript
复制
================================================================================2021-07-17 22:16:29
step1: preparing data ...

root
 |-- mean_radius: integer (nullable = true)
 |-- mean_texture: integer (nullable = true)
 |-- mean_perimeter: double (nullable = true)
 |-- mean_area: double (nullable = true)
 |-- mean_smoothness: double (nullable = true)
 |-- mean_compactness: double (nullable = true)
 |-- mean_concavity: double (nullable = true)
 |-- mean_concave_points: double (nullable = true)
 |-- mean_symmetry: double (nullable = true)
 |-- mean_fractal_dimension: double (nullable = true)
 |-- radius_error: double (nullable = true)
 |-- texture_error: double (nullable = true)
 |-- perimeter_error: double (nullable = true)
 |-- area_error: double (nullable = true)
 |-- smoothness_error: double (nullable = true)
 |-- compactness_error: double (nullable = true)
 |-- concavity_error: double (nullable = true)
 |-- concave_points_error: double (nullable = true)
 |-- symmetry_error: double (nullable = true)
 |-- fractal_dimension_error: double (nullable = true)
 |-- worst_radius: double (nullable = true)
 |-- worst_texture: double (nullable = true)
 |-- worst_perimeter: double (nullable = true)
 |-- worst_area: double (nullable = true)
 |-- worst_smoothness: double (nullable = true)
 |-- worst_compactness: double (nullable = true)
 |-- worst_concavity: double (nullable = true)
 |-- worst_concave_points: double (nullable = true)
 |-- worst_symmetry: double (nullable = true)
 |-- worst_fractal_dimension: double (nullable = true)
 |-- label: integer (nullable = true)

{"ml_attr":{"attrs":{"numeric":[{"idx":0,"name":"mean_radius"},{"idx":1,"name":"mean_texture"},{"idx":2,"name":"mean_perimeter"},{"idx":3,"name":"mean_area"},{"idx":4,"name":"mean_smoothness"},{"idx":5,"name":"mean_compactness"},{"idx":6,"name":"mean_concavity"},{"idx":7,"name":"mean_concave_points"},{"idx":8,"name":"mean_symmetry"},{"idx":9,"name":"mean_fractal_dimension"},{"idx":10,"name":"radius_error"},{"idx":11,"name":"texture_error"},{"idx":12,"name":"perimeter_error"},{"idx":13,"name":"area_error"},{"idx":14,"name":"smoothness_error"},{"idx":15,"name":"compactness_error"},{"idx":16,"name":"concavity_error"},{"idx":17,"name":"concave_points_error"},{"idx":18,"name":"symmetry_error"},{"idx":19,"name":"fractal_dimension_error"},{"idx":20,"name":"worst_radius"},{"idx":21,"name":"worst_texture"},{"idx":22,"name":"worst_perimeter"},{"idx":23,"name":"worst_area"},{"idx":24,"name":"worst_smoothness"},{"idx":25,"name":"worst_compactness"},{"idx":26,"name":"worst_concavity"},{"idx":27,"name":"worst_concave_points"},{"idx":28,"name":"worst_symmetry"},{"idx":29,"name":"worst_fractal_dimension"}]},"num_attrs":30}}
+--------------------+-----+
|            features|label|
+--------------------+-----+
|[17.0,10.0,122.8,...|    0|
|[20.0,17.0,132.9,...|    0|
|[19.0,21.0,130.0,...|    0|
|[11.0,20.0,77.58,...|    0|
|[20.0,14.0,135.1,...|    0|
|[12.0,15.0,82.57,...|    0|
|[18.0,19.0,119.6,...|    0|
|[13.0,20.0,90.2,5...|    0|
|[13.0,21.0,87.5,5...|    0|
|[12.0,24.0,83.97,...|    0|
+--------------------+-----+
only showing top 10 rows

================================================================================2021-07-17 22:16:29
step2: defining model ...

baggingFraction: Bagging fraction (default: 1.0, current: 1.0)
baggingFreq: Bagging frequency (default: 0, current: 0)
baggingSeed: Bagging seed (default: 3, current: 1)
boostFromAverage: Adjusts initial score to the mean of labels for faster convergence (default: true, current: false)
boostingType: Default gbdt = traditional Gradient Boosting Decision Tree. Options are: gbdt, gbrt, rf (Random Forest), random_forest, dart (Dropouts meet Multiple Additive Regression Trees), goss (Gradient-based One-Side Sampling).  (default: gbdt, current: gbdt)
categoricalSlotIndexes: List of categorical column indexes, the slot index in the features column (undefined)
categoricalSlotNames: List of categorical column slot names, the slot name in the features column (current: [Ljava.lang.String;@351fb3fc)
defaultListenPort: The default listen port on executors, used for testing (default: 12400)
earlyStoppingRound: Early stopping round (default: 0)
featureFraction: Feature fraction (default: 1.0, current: 1.0)
featuresCol: features column name (default: features, current: features)
initScoreCol: The name of the initial score column, used for continued training (undefined)
isProvideTrainingMetric: Whether output metric result over training dataset. (default: false)
isUnbalance: Set to true if training data is unbalanced in binary classification scenario (default: false)
labelCol: label column name (default: label, current: label)
lambdaL1: L1 regularization (default: 0.0, current: 0.0)
lambdaL2: L2 regularization (default: 0.0, current: 0.0)
learningRate: Learning rate or shrinkage rate (default: 0.1, current: 0.1)
maxBin: Max bin (default: 255, current: 255)
maxDepth: Max depth (default: -1, current: -1)
minSumHessianInLeaf: Minimal sum hessian in one leaf (default: 0.001, current: 0.001)
modelString: LightGBM model to retrain (default: )
numBatches: If greater than 0, splits data into separate batches during training (default: 0)
numIterations: Number of iterations, LightGBM constructs num_class * num_iterations trees (default: 100, current: 100)
numLeaves: Number of leaves (default: 31, current: 31)
objective: The Objective. For regression applications, this can be: regression_l2, regression_l1, huber, fair, poisson, quantile, mape, gamma or tweedie. For classification applications, this can be: binary, multiclass, or multiclassova.  (default: binary, current: binary)
parallelism: Tree learner parallelism, can be set to data_parallel or voting_parallel (default: data_parallel)
predictionCol: prediction column name (default: prediction)
probabilityCol: Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities (default: probability)
rawPredictionCol: raw prediction (a.k.a. confidence) column name (default: rawPrediction)
thresholds: Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold (undefined)
timeout: Timeout in seconds (default: 1200.0)
useBarrierExecutionMode: Use new barrier execution mode in Beta testing, off by default. (default: false)
validationIndicatorCol: Indicates whether the row is for training or validation (undefined)
verbosity: Verbosity where lt 0 is Fatal, eq 0 is Error, eq 1 is Info, gt 1 is Debug (default: 1)
weightCol: The name of the weight column (undefined)
================================================================================2021-07-17 22:16:29
step3: training model ...

+--------------------+------------------------+
|        feature_name|feature_importance(gain)|
+--------------------+------------------------+
|          worst_area|       974.9349449056517|
|     worst_perimeter|       885.3691593843923|
|worst_concave_points|      255.67364284247745|
| mean_concave_points|      250.21955942230738|
|       worst_texture|      151.07745621304454|
|          area_error|       65.75557372416814|
|    worst_smoothness|       62.29973236144293|
|     mean_smoothness|      19.902610011957194|
|        worst_radius|        16.8275272153341|
|           mean_area|       12.41261211467938|
|      mean_perimeter|      12.127510878875537|
|     worst_concavity|      11.414242858900646|
|   compactness_error|      10.996194651604892|
|        mean_texture|       9.274276675339683|
|     concavity_error|       8.009578698471008|
|      symmetry_error|        7.93458393366217|
|        radius_error|       7.357747321194173|
|      worst_symmetry|       5.951699663755868|
|fractal_dimension...|       4.811246624133022|
|concave_points_error|        4.73140145466917|
|   worst_compactness|       4.469820723182832|
|       texture_error|       4.356178728700959|
|    mean_compactness|       3.123736411467967|
|       mean_symmetry|      1.9968633063354835|
|      mean_concavity|      1.9701941942285224|
|    smoothness_error|       1.673042485476758|
|worst_fractal_dim...|      1.3582115541525612|
|mean_fractal_dime...|      0.6050912755332459|
|     perimeter_error|      0.3889888676278275|
|         mean_radius|    5.684356116234315...|
+--------------------+------------------------+

================================================================================2021-07-17 22:16:30
step4: evaluating model ...

train_auc = 1.0
val_auc = 0.9890340267698758
================================================================================2021-07-17 22:16:31
step5: using model ...

+--------------------+-----+--------------------+--------------------+----------+
|            features|label|       rawPrediction|         probability|prediction|
+--------------------+-----+--------------------+--------------------+----------+
|[9.0,12.0,60.34,2...|    1|[-10.570726382467...|[-9.5707263824679...|       1.0|
|[10.0,16.0,65.85,...|    1|[-10.120435089856...|[-9.1204350898567...|       1.0|
|[10.0,21.0,68.51,...|    1|[-8.8020346337692...|[-7.8020346337692...|       1.0|
|[11.0,14.0,73.53,...|    1|[-10.315758226759...|[-9.3157582267596...|       1.0|
|[11.0,15.0,73.38,...|    1|[-10.086077130817...|[-9.0860771308174...|       1.0|
|[11.0,16.0,74.72,...|    1|[-6.9649803118554...|[-5.9649803118554...|       1.0|
|[11.0,17.0,71.25,...|    1|[-10.694667171248...|[-9.6946671712481...|       1.0|
|[11.0,17.0,75.27,...|    1|[-9.0156792680894...|[-8.0156792680894...|       1.0|
|[11.0,18.0,75.17,...|    1|[-5.7513546284621...|[-4.7513546284621...|       1.0|
|[11.0,18.0,76.38,...|    1|[-4.3134421808792...|[-3.3134421808792...|       1.0|
|[12.0,15.0,82.57,...|    0|[2.49310942805160...|[3.49310942805160...|       0.0|
|[12.0,17.0,78.27,...|    1|[-10.516042459712...|[-9.5160424597122...|       1.0|
|[12.0,18.0,83.19,...|    1|[-9.4899850168431...|[-8.4899850168431...|       1.0|
|[12.0,22.0,78.75,...|    1|[-8.9917629958319...|[-7.9917629958319...|       1.0|
|[14.0,15.0,92.68,...|    1|[-7.2724968676775...|[-6.2724968676775...|       1.0|
|[14.0,15.0,95.77,...|    1|[-5.0143190624015...|[-4.0143190624015...|       1.0|
|[14.0,16.0,96.22,...|    1|[-5.3849620427583...|[-4.3849620427583...|       1.0|
|[14.0,19.0,97.83,...|    1|[-3.3292007261919...|[-2.3292007261919...|       1.0|
|[16.0,14.0,104.3,...|    1|[4.66077729134426...|[5.66077729134426...|       0.0|
|[19.0,24.0,122.0,...|    0|[10.1503565558166...|[11.1503565558166...|       0.0|
+--------------------+-----+--------------------+--------------------+----------+

1.0
================================================================================2021-07-17 22:16:31
step6: saving model ...

load model ...

收工。?

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-07-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 算法美食屋 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一,环境配置
  • 二,范例代码
  • 三,输出参考
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档