前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >NumPy基础(二)(新手速来!)

NumPy基础(二)(新手速来!)

作者头像
天道Vax的时间宝藏
发布2021-08-11 11:09:34
9790
发布2021-08-11 11:09:34
举报
文章被收录于专栏:用户5305560的专栏

NumPy 是一个为 Python 提供高性能向量、矩阵和高维数据结构的科学计算库。它通过 C 和 Fortran 实现,因此用向量和矩阵建立方程并实现数值计算有非常好的性能。NumPy 基本上是所有使用 Python 进行数值计算的框架和包的基础,例如 TensorFlow 和 PyTorch,构建机器学习模型最基础的内容就是学会使用 NumPy 搭建计算过程。

基础运算

数组中的算术运算一般是元素级的运算,运算结果会产生一个新的数组。如下所示减法、加法、平方、对应元素乘积和逻辑运算都是元素级的操作。

代码语言:javascript
复制
>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False])

不同于许多科学计算语言,乘法算子 * 或 multiple 函数在 NumPy 数组中用于元素级的乘法运算,矩阵乘法可用 dot 函数或方法来执行。

代码语言:javascript
复制
>>> A = np.array( [[1,1],
...             [0,1]] )
>>> B = np.array( [[2,0],
...             [3,4]] )
>>> A*B                         # elementwise product
array([[2, 0],
       [0, 4]])
>>> A.dot(B)                    # matrix product
array([[5, 4],
       [3, 4]])
>>> np.dot(A, B)                # another matrix product
array([[5, 4],
       [3, 4]])

有一些操作,如 += 和 *=,其输出结果会改变一个已存在的数组,而不是如上述运算创建一个新数组。

代码语言:javascript
复制
>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> b += a
>>> b
array([[ 3.417022  ,  3.72032449,  3.00011437],
       [ 3.30233257,  3.14675589,  3.09233859]])
>>> a += b                  # b is not automatically converted to integer type
Traceback (most recent call last):
  ...
TypeError: Cannot cast ufunc add output from dtype( float64 ) to dtype( int64 ) with casting rule  same_kind

当操作不同数据类型的数组时,最后输出的数组类型一般会与更普遍或更精准的数组相同(这种行为叫做 Upcasting)。

代码语言:javascript
复制
>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0,pi,3)
>>> b.dtype.name
 float64
>>> c = a+b
>>> c
array([ 1.        ,  2.57079633,  4.14159265])
>>> c.dtype.name
 float64
>>> d = np.exp(c*1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
       -0.54030231-0.84147098j])
>>> d.dtype.name
 complex128

许多一元运算,如计算数组中所有元素的总和,是属于 ndarray 类的方法。

代码语言:javascript
复制
>>> a = np.random.random((2,3))
>>> a
array([[ 0.18626021,  0.34556073,  0.39676747],
       [ 0.53881673,  0.41919451,  0.6852195 ]])
>>> a.sum()
2.5718191614547998
>>> a.min()
0.1862602113776709
>>> a.max()
0.6852195003967595

默认状态下,这些运算会把数组视为一个数列而不论它的 shape。然而,如果在指定 axis 参数下,你可以指定针对哪一个维度进行运算。如下 axis=0 将针对每一个列进行运算,例如 b.sum(axis=0) 将矩阵 b 中每一个列的所有元素都相加为一个标量。

代码语言:javascript
复制
>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> b.sum(axis=0)                            # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)                            # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)                         # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])

索引、截取和迭代

一维数组可以被索引、截取(Slicing)和迭代,就像 Python 列表和元组一样。注意其中 a[0:6:2] 表示从第 1 到第 6 个元素,并对每两个中的第二个元素进行操作。

代码语言:javascript
复制
>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,   216,   343,   512,   729])
>>> a[ : :-1]                                 # reversed a
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
>>> for i in a:
...     print(i**(1/3.))
...
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
9.0

多维数组每个轴都可以有一个索引。这些索引在元组中用逗号分隔:

代码语言:javascript
复制
>>> def f(x,y):
...     return 10*x+y
...
>>> b = np.fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0,  1,  2,  3],
       [10, 11, 12, 13],
       [20, 21, 22, 23],
       [30, 31, 32, 33],
       [40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1]                       # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1]                        # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ]                      # each column in the second and third row of b
array([[10, 11, 12, 13],
       [20, 21, 22, 23]])

当有些维度没有指定索引时,空缺的维度被默认为取所有元素。

代码语言:javascript
复制
>>> b[-1]                                  # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])

如上因为省略了第二维,b[i] 表示输出第 i 行。当然我们也可以用「:」表示省略的维度,例如 b[i] 等价于 b[i, :]。此外,NumPy 还允许使用 dots (...) 表示足够多的冒号来构建完整的索引元组。

比如,如果 x 是 5 维数组:

  • x[1,2,...] 等于 x[1,2,:,:,:],
  • x[...,3] 等于 x[:,:,:,:,3]
  • x[4,...,5,:] 等于 x[4,:,:,5,:]
代码语言:javascript
复制
>>> c = np.array( [[[  0,  1,  2],               # a 3D array (two stacked 2D arrays)
...                 [ 10, 12, 13]],
...                [[100,101,102],
...                 [110,112,113]]])
>>> c.shape
(2, 2, 3)
>>> c[1,...]                                   # same as c[1,:,:] or c[1]
array([[100, 101, 102],
       [110, 112, 113]])
>>> c[...,2]                                   # same as c[:,:,2]
array([[  2,  13],
       [102, 113]])

多维数组中的迭代以第一条轴为参照完成,如下每一次循环都输出一个 b[i]:

代码语言:javascript
复制
>>> for row in b:
...     print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

然而,如果想在数组的每个元素上进行操作,可以用 flat 方法。flat 是一个在数组所有元素中运算的迭代器,如下将逐元素地对数组进行操作。

代码语言:javascript
复制
>>> for element in b.flat:
...     print(element)
...

Shape 变换

一个数组的 shape 是由轴及其元素数量决定的,它一般由一个整型元组表示,且元组中的整数表示对应维度的元素数。

代码语言:javascript
复制
>>> a = np.floor(10*np.random.random((3,4)))
>>> a
array([[ 2.,  8.,  0.,  6.],
       [ 4.,  5.,  1.,  1.],
       [ 8.,  9.,  3.,  6.]])
>>> a.shape
(3, 4)

一个数组的 shape 可以由许多方法改变。例如以下三种方法都可输出一个改变 shape 后的新数组,它们都不会改变原数组。其中 reshape 方法在实践中会经常用到,因为我们需要改变数组的维度以执行不同的运算。

代码语言:javascript
复制
>>> a.ravel()  # returns the array, flattened
array([ 2.,  8.,  0.,  6.,  4.,  5.,  1.,  1.,  8.,  9.,  3.,  6.])
>>> a.reshape(6,2)  # returns the array with a modified shape
array([[ 2.,  8.],
       [ 0.,  6.],
       [ 4.,  5.],
       [ 1.,  1.],
       [ 8.,  9.],
       [ 3.,  6.]])
>>> a.T  # returns the array, transposed
array([[ 2.,  4.,  8.],
       [ 8.,  5.,  9.],
       [ 0.,  1.,  3.],
       [ 6.,  1.,  6.]])
>>> a.T.shape
(4, 3)
>>> a.shape
(3, 4)

ravel() 和 flatten() 都是将多维数组降位一维,flatten() 返回一份新的数组,且对它所做的修改不会影响原始数组,而 ravel() 返回的是 view,会影响原始矩阵。

在矩阵的转置中,行和列的维度将交换,且矩阵中每一个元素将沿主对角线对称变换。此外,reshape 如下所示返回修改过维度的新数组,而 resize 方法将直接修改原数组本身的维度。

代码语言:javascript
复制
>>> a
array([[ 2.,  8.,  0.,  6.],
       [ 4.,  5.,  1.,  1.],
       [ 8.,  9.,  3.,  6.]])
>>> a.resize((2,6))
>>> a
array([[ 2.,  8.,  0.,  6.,  4.,  5.],
       [ 1.,  1.,  8.,  9.,  3.,  6.]])

如果在 shape 变换中一个维度设为-1,那么这一个维度包含的元素数将会被自动计算。如下所示,a 一共有 12 个元素,在确定一共有 3 行后,-1 会自动计算出应该需要 4 列才能安排所有的元素。

代码语言:javascript
复制
>>> a.reshape(3,-1)
array([[ 2.,  8.,  0.,  6.],
       [ 4.,  5.,  1.,  1.],
       [ 8.,  9.,  3.,  6.]])

数组堆叠

数组可以在不同轴上被堆叠在一起。如下所示 vstack 将在第二个维度(垂直)将两个数组拼接在一起,而 hstack 将在第一个维度(水平)将数组拼接在一起。

代码语言:javascript
复制
>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8.,  8.],
       [ 0.,  0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1.,  8.],
       [ 0.,  4.]])
>>> np.vstack((a,b))
array([[ 8.,  8.],
       [ 0.,  0.],
       [ 1.,  8.],
       [ 0.,  4.]])
>>> np.hstack((a,b))
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])

column_stack 函数可堆叠一维数组为二维数组的列,作用相等于针对二维数组的 hstack 函数。

代码语言:javascript
复制
>>> from numpy import newaxis
>>> np.column_stack((a,b))     # with 2D arrays
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])
>>> a = np.array([4.,2.])
>>> b = np.array([3.,8.])
>>> np.column_stack((a,b))     # returns a 2D array
array([[ 4., 3.],
       [ 2., 8.]])
>>> np.hstack((a,b))           # the result is different
array([ 4., 2., 3., 8.])
>>> a[:,newaxis]               # this allows to have a 2D columns vector
array([[ 4.],
       [ 2.]])
>>> np.column_stack((a[:,newaxis],b[:,newaxis]))
array([[ 4.,  3.],
       [ 2.,  8.]])
>>> np.hstack((a[:,newaxis],b[:,newaxis]))   # the result is the same
array([[ 4.,  3.],
       [ 2.,  8.]])

与 column_stack 相似,row_stack 函数相等于二维数组中的 vstack。一般在高于二维的情况中,hstack 沿第二个维度堆叠、vstack 沿第一个维度堆叠,而 concatenate 更进一步可以在任意给定的维度上堆叠两个数组,当然这要求其它维度的长度都相等。concatenate 在很多深度模型中都有应用,例如权重矩阵的堆叠或 DenseNet 特征图的堆叠。

在复杂情况中,r_ 和 c_ 可以有效地在创建数组时帮助沿着一条轴堆叠数值,它们同样允许使用范围迭代「:」生成数组。

代码语言:javascript
复制
>>> np.r_[1:4,0,4]
array([1, 2, 3, 0, 4])

当用数组为参数时,r_ 和 c_ 在默认行为下与 vstack 和 hstack 相似,但它们如 concatenate 一样允许给定需要堆叠的维度。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020/06/04 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 基础运算
    • 索引、截取和迭代
    • Shape 变换
      • 数组堆叠
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档