Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Input: matrix = [[1,0,1],[0,-2,3]], k = 2
Output: 2
Explanation: Because the sum of rectangle [[0, 1], [-2, 3]] is 2,
and 2 is the max number no larger than k (k = 2).
Note:
class Solution {
public:
int maxSumSubmatrix(std::vector<std::vector<int>>& matrix, int k) {
int row = matrix.size();
if(row == 0) {
return 0;
}
int col = matrix[0].size();
int res = INT_MIN;
for(int i = 0; i < col; i++) {
auto sum = std::vector<int>(row, 0);
for(int j = i; j < col; j++) {
for(int z = 0; z < row; z++) {
sum[z] += matrix[z][j];
}
auto set = std::set<int>();
set.insert(0);
int currentSum = 0;
for(int num : sum) {
currentSum += num;
auto it = set.lower_bound(currentSum - k);
if(it != set.end()) {
res = std::max(res, currentSum - *it);
}
set.insert(currentSum);
}
}
}
return res;
}
};