前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从线程池拒绝策略中我们可以学到什么?

从线程池拒绝策略中我们可以学到什么?

作者头像
明明如月学长
发布2021-08-31 10:56:51
3700
发布2021-08-31 10:56:51
举报
文章被收录于专栏:明明如月的技术专栏

一、背景

很多人都知道或者用过线程池,线程池构造方法的参数中有一个参数为拒绝策略。

那么,通过拒绝策略我们可以学到哪些思想?

下面简单讲讲自己的理解。

二、可以学到什么?

2.1 为什么提供多种拒绝策略?

不知道你有没有思考过,为什么会有那么多编程语言?为什么会有那么多算法?为什么会有那么多设计模式?为什么会有那么多存储方式?为什么会有那么多线程池拒绝策略?

如果你稍微思考,就会发现不同的编程语言、算法、设计模式、存储方式、线程池拒绝策略等适用不同的场景。

(图片来源:美团技术

启发:没有最好的选择,只有最适合的选择 我们要做的是在某个特定场景下选择最适合的技术,而不是最新、最热的技术。

2.2 如果我来设计拒绝策略,我能想到几个?

如果workerCount >= maximumPoolSize,并且线程池内的阻塞队列已满, 则根据拒绝策略来处理该任务。

如果由你来设计线程池经典的处理策略你会提供怎样的策略?

如果我们从来没学过这一块,可能就想不出这么多经典的处理策略。

JDK 源码提供的拒绝策略应该是经过深思熟虑,能够覆盖到常见业务场景。

启发:当我们面临大数据量处理时,也可以参考这些策略根据其适用的场景去灵活处理。

2.3 为什么默认策略是 AbortPolicy?

不知道你是否思考过,为什么默认的策略是 AbortPolicy?

如果默认是 DiscardPolicy 或者 DiscardOldestPolicy,真正触发拒绝策略时,使用者不容易感知。 使用者对源码理解不深入很容易出现不符合预期的运行效果。

显然超出“承载能力” 丢弃任务并抛出异常是一个更适合的选择。不提供服务,没啥好说的,已经超过能力了,没法提供服务。抛出异常为了让上游感知到并做出相应处理。

另外我们可以看下 Redis 缓存淘汰策略:

1.noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外) 2.allkeys-lru:从所有key中使用LRU算法进行淘汰 3.volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰 4.allkeys-random:从所有key中随机淘汰数据 5.volatile-random:从设置了过期时间的key中随机淘汰 6.volatile-ttl:在设置了过期时间的key中,淘汰过期时间剩余最短的

我们会发现两者也有“惊人”的相似性,都是不提供服务,返回错误。

启发1:当我们遇到超过承载量的场景时,需要提供不同的选择,可以借鉴上述思想,并且默认需要考虑报错,保护自身的同事,让上游感知到。

启发2:可以通过对比经典技术对相似问题的处理来得到比较靠谱的方案 or 思考方向。

2.4 如果提供的策略无法满足需求怎么办?

作为一个严谨的设计者,就应该预料到自己提供的策略不可能涵盖所有场景。 因此需要支持用户自定义才行。

比如 Dubbo 中提供了 AbortPolicyWithReport 拒绝策略,在触发拒绝策略时可以报告一些信息。

代码语言:javascript
复制
public class AbortPolicyWithReport extends AbortPolicy {
    protected static final Logger logger = LoggerFactory.getLogger(AbortPolicyWithReport.class);
    private final String threadName;
    private final URL url;
    private static volatile long lastPrintTime = 0L;
    private static Semaphore guard = new Semaphore(1);

    public AbortPolicyWithReport(String threadName, URL url) {
        this.threadName = threadName;
        this.url = url;
    }

    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        String msg = String.format("Thread pool is EXHAUSTED! Thread Name: %s, Pool Size: %d (active: %d, core: %d, max: %d, largest: %d), Task: %d (completed: %d), Executor status:(isShutdown:%s, isTerminated:%s, isTerminating:%s), in %s://%s:%d!", this.threadName, e.getPoolSize(), e.getActiveCount(), e.getCorePoolSize(), e.getMaximumPoolSize(), e.getLargestPoolSize(), e.getTaskCount(), e.getCompletedTaskCount(), e.isShutdown(), e.isTerminated(), e.isTerminating(), this.url.getProtocol(), this.url.getIp(), this.url.getPort());
        logger.warn(msg);
        this.dumpJStack();
        throw new RejectedExecutionException(msg);
    }

    private void dumpJStack() {
        long now = System.currentTimeMillis();
        if (now - lastPrintTime >= 600000L) {
            if (guard.tryAcquire()) {
                Executors.newSingleThreadExecutor().execute(new Runnable() {
                    public void run() {
                        String dumpPath = AbortPolicyWithReport.this.url.getParameter("dump.directory", System.getProperty("user.home"));
                        String OS = System.getProperty("os.name").toLowerCase();
                        SimpleDateFormat sdf;
                        if (OS.contains("win")) {
                            sdf = new SimpleDateFormat("yyyy-MM-dd_HH-mm-ss");
                        } else {
                            sdf = new SimpleDateFormat("yyyy-MM-dd_HH:mm:ss");
                        }

                        String dateStr = sdf.format(new Date());
                        FileOutputStream jstackStream = null;

                        try {
                            jstackStream = new FileOutputStream(new File(dumpPath, "Dubbo_JStack.log." + dateStr));
                            JVMUtil.jstack(jstackStream);
                        } catch (Throwable var15) {
                            AbortPolicyWithReport.logger.error("dump jstack error", var15);
                        } finally {
                            AbortPolicyWithReport.guard.release();
                            if (jstackStream != null) {
                                try {
                                    jstackStream.flush();
                                    jstackStream.close();
                                } catch (IOException var14) {
                                }
                            }

                        }

                        AbortPolicyWithReport.lastPrintTime = System.currentTimeMillis();
                    }
                });
            }
        }
    }
}

PS: 这也是我们学习和理解 volatile、Semaphore 的一个机会。

再比如 Netty 中就提供了通过新建线程执行的策略:NewThreadRunsPolicy

代码语言:javascript
复制
    private static final class NewThreadRunsPolicy implements RejectedExecutionHandler {
        public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
            try {
                final Thread t = new Thread(r, "Temporary task executor");
                t.start();
            } catch (Throwable e) {
                throw new RejectedExecutionException(
                        "Failed to start a new thread", e);
            }
        }
    }

这些开源项目的拒绝策略都为我们开了不少脑洞。

我们也可以根据具体业务,扔到消息队列里再消费等方式处理。

启发1:面向未来编程。 当我们设计一些通用工具时,也要留一些拓展性给别人。

启发1: 带着问题学技术或者把技术放在特定场景里学习,更有兴趣,也更容易掌握。

三、总结

本文简单谈下自己从线程池拒绝策略中学到的一点知识,希望能够对大家有启发。

希望大家在读源码时能多一些思考,多思考为什么,而不是记忆结论。

多问几个问题,如:

  • 这是为了解决什么问题?
  • 作者为什么这么设计? 这么设计的优点是什么?
  • 这么设计的核心原理是什么(作者是怎么设计的) ?
  • 如果是我会怎么设计?
  • 别人是如何设计的?
  • 我能从中学到什么,得到什么对未来技术成长有帮助的启发?

如果你觉得本文对你有帮助,欢迎点赞、收藏加关注三连!!


本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021/05/13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、背景
  • 二、可以学到什么?
    • 2.1 为什么提供多种拒绝策略?
      • 2.2 如果我来设计拒绝策略,我能想到几个?
        • 2.3 为什么默认策略是 AbortPolicy?
          • 2.4 如果提供的策略无法满足需求怎么办?
          • 三、总结
          相关产品与服务
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档