在实际生产中,Flink 都是以集群在运行,在运行的过程中包含了两类进程。
JobManager:
它扮演的是集群管理者的角色,负责调度任务、协调 checkpoints、协调故障恢复、收集 Job 的状态信息,并管理 Flink 集群中的从节点 TaskManager。
TaskManager:
实际负责执行计算的 Worker,在其上执行 Flink Job 的一组 Task;TaskManager 还是所在节点的管理员,它负责把该节点上的服务器信息比如内存、磁盘、任务运行情况等向 JobManager 汇报。
Client:
用户在提交编写好的 Flink 工程时,会先创建一个客户端再进行提交,这个客户端就是 Client
Flink 基本工作原理_sxiaobei的博客-CSDN博客_flink原理
基于Flink1.8的Flink On Yarn的启动流程_super_wj0820的博客-CSDN博客
Apache Flink 1.11 Documentation: YARN Setup
官网关于Flink的词汇表
Apache Flink 1.11 Documentation: Glossary
1.Dataflow:Flink程序在执行的时候会被映射成一个数据流模型
2.Operator:数据流模型中的每一个操作被称作Operator,Operator分为:Source/Transform/Sink
3.Partition:数据流模型是分布式的和并行的,执行中会形成1~n个分区
4.Subtask:多个分区任务可以并行,每一个都是独立运行在一个线程中的,也就是一个Subtask子任务
5.Parallelism:并行度,就是可以同时真正执行的子任务数/分区数
数据在两个operator(算子)之间传递的时候有两种模式:
1.One to One模式:
两个operator用此模式传递的时候,会保持数据的分区数和数据的排序;如上图中的Source1到Map1,它就保留的Source的分区特性,以及分区元素处理的有序性。--类似于Spark中的窄依赖
2.Redistributing 模式:
这种模式会改变数据的分区数;每个一个operator subtask会根据选择transformation把数据发送到不同的目标subtasks,比如keyBy()会通过hashcode重新分区,broadcast()和rebalance()方法会随机重新分区。--类似于Spark中的宽依赖
客户端在提交任务的时候会对Operator进行优化操作,能进行合并的Operator会被合并为一个Operator,
合并后的Operator称为Operator chain,实际上就是一个执行链,每个执行链会在TaskManager上一个独立的线程中执行--就是SubTask。
每个TaskManager是一个JVM的进程, 为了控制一个TaskManager(worker)能接收多少个task,Flink通过Task Slot来进行控制。TaskSlot数量是用来限制一个TaskManager工作进程中可以同时运行多少个工作线程,TaskSlot 是一个 TaskManager 中的最小资源分配单位,一个 TaskManager 中有多少个 TaskSlot 就意味着能支持多少并发的Task处理。
Flink将进程的内存进行了划分到多个slot中,内存被划分到不同的slot之后可以获得如下好处:
- TaskManager最多能同时并发执行的子任务数是可以通过TaskSolt数量来控制的
- TaskSolt有独占的内存空间,这样在一个TaskManager中可以运行多个不同的作业,作业之间不受影响。
Flink允许子任务共享插槽,即使它们是不同任务(阶段)的子任务(subTask),只要它们来自同一个作业。
比如图左下角中的map和keyBy和sink 在一个 TaskSlot 里执行以达到资源共享的目的。
允许插槽共享有两个主要好处:
- 资源分配更加公平,如果有比较空闲的slot可以将更多的任务分配给它。
- 有了任务槽共享,可以提高资源的利用率。
注意:
slot是静态的概念,是指taskmanager具有的并发执行能力
parallelism是动态的概念,是指程序运行时实际使用的并发能力
Flink运行时架构主要包括四个不同的组件,它们会在运行流处理应用程序时协同工作:
因为Flink是用Java和Scala实现的,所以所有组件都会运行在Java虚拟机上。每个组件的职责如下:
由Flink程序直接映射成的数据流图是StreamGraph,也被称为逻辑流图,因为它们表示的是计算逻辑的高级视图。为了执行一个流处理程序,Flink需要将逻辑流图转换为物理数据流图(也叫执行图),详细说明程序的执行方式。
Flink 中的执行图可以分成四层:StreamGraph -> JobGraph -> ExecutionGraph -> 物理执行图。
StreamGraph:最初的程序执行逻辑流程,也就是算子之间的前后顺序--在Client上生成
JobGraph:将OneToOne的Operator合并为OperatorChain--在Client上生成
ExecutionGraph:将JobGraph根据代码中设置的并行度和请求的资源进行并行化规划!--在JobManager上生成
物理执行图:将ExecutionGraph的并行计划,落实到具体的TaskManager上,将具体的SubTask落实到具体的TaskSlot内进行运行。