前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎

[源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎

作者头像
罗西的思考
发布2021-10-29 11:02:24
1.6K0
发布2021-10-29 11:02:24
举报
文章被收录于专栏:罗西的思考

源码解析 Pytorch 如何实现后向传播 (1)---- 调用引擎

目录

0x00 摘要

本系列将通过大概十篇左右文章来分析 PyTorch 的自动微分功能如何实现。本文是后向传播的第一篇,介绍调用流程:如何从 Python 代码进入到 C++ autograd 引擎。

系列前几篇连接如下:

深度学习利器之自动微分(1)

深度学习利器之自动微分(2)

[源码解析]深度学习利器之自动微分(3) --- 示例解读

[源码解析]PyTorch如何实现前向传播(1) --- 基础类(上)

[源码解析]PyTorch如何实现前向传播(2) --- 基础类(下)

[源码解析] PyTorch如何实现前向传播(3) --- 具体实现

0x01 前文回顾

我们首先从三个角度来看看前向传播和后向传播的联系。

1.1 训练过程

我们首先回忆一下训练过程。

神经网络 (NN) 是对某些输入数据执行的嵌套函数的集合。这些函数由参数 (由权重和偏差组成)定义,这些参数在 PyTorch 中存储在张量中。训练 NN 分两步进行:

  • 前向传播:在前向传播中,神经网络对正确的输出做出最好的猜测。它通过它的每个函数运行输入数据来做出这个猜测。
  • 反向传播:在反向传播中,神经网络根据其猜测中的误差成比例地调整其参数。它通过从输出向后遍历,收集关于函数参数(梯度)的误差导数,并使用梯度下降优化参数来实现这一点。

1.2 例子

其次,我们回忆一下前文示例。

代码语言:javascript
复制
        def train_loop(model, optimizer, iterations):
            for _ in range(iterations):
                optimizer.zero_grad()
                output = model(input) # 前向传播
                loss = criterion(output, target) # 计算损失
                loss.backward() # 反向传播
                optimizer.step()

前向计算结束之后,我们已经得到了计算图的依赖关系,于是可以开始进行后向传播了。我们需要从 backward 开始分析。

1.3 源码剖析

从前文我们可以看到,前向计算函数 sub_Tensor 针对前向计算结果 result 做了如下配置:

  • 如何知道调用反向计算 :result 就是前向计算的结果,result 之中有 autograd_meta_,其是一个 DifferentiableViewMeta 类型,DifferentiableViewMeta 的 grad_fn_ 就是反向计算的梯度函数。grad_fn_ 指向了 SubBackward0
  • 反向传播如何计算 :调用 SubBackward0 计算。
  • SubBackward0 的输入 :得到了前向计算的输出 result(其会在反向传播时候作为输入变量,就是设定到了 SubBackward0.input_metadata_ 之上)。
  • SubBackward0 的输出 :构建了 next_edges_ 作为其反向传播时候的输出边。根据 next_edges_ 就能得到反向传导图了。

既然梳理了前向传播与后向传播的关系,我们接下来就看看如何进入到后向传播环节。

0x02 Python 调用过程

2.1 调用

我们首先来到了 torch/_tensor.py,这里有两个函数可以计算梯度,我们选取 backward 来看看。

代码语言:javascript
复制
def backward(self, gradient=None, retain_graph=None, create_graph=False, inputs=None):
    r"""Computes the gradient of current tensor w.r.t. graph leaves.
    """
    if has_torch_function_unary(self):
        return handle_torch_function(
            Tensor.backward,
            (self,),
            self,
            gradient=gradient,
            retain_graph=retain_graph,
            create_graph=create_graph,
            inputs=inputs)
    torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)

然后来到了 torch/autograd/__init__.py。这里 backward 主要逻辑是:

  • 利用输入参数来构建输入张量和梯度张量 。
  • 使用 _make_grads 把 grad_tensors 中的元素重新组织成tuple(list(torch.Tensor, ...))的形式。
  • 然后利用 Variable._execution_engine.run_backward 执行后向传播。
代码语言:javascript
复制
def backward(
    tensors: _TensorOrTensors,
    grad_tensors: Optional[_TensorOrTensors] = None,
    retain_graph: Optional[bool] = None,
    create_graph: bool = False,
    grad_variables: Optional[_TensorOrTensors] = None,
    inputs: Optional[_TensorOrTensors] = None,
) -> None:
    r"""Computes the sum of gradients of given tensors with respect to graph
    leaves.
    """
    if grad_variables is not None:
        warnings.warn("'grad_variables' is deprecated. Use 'grad_tensors' instead.")
        if grad_tensors is None:
            grad_tensors = grad_variables
        else:
            raise RuntimeError("'grad_tensors' and 'grad_variables' (deprecated) "
                               "arguments both passed to backward(). Please only "
                               "use 'grad_tensors'.")
    if inputs is not None and len(inputs) == 0:
        raise RuntimeError("'inputs' argument to backward() cannot be empty.")

    # 利用输入参数来构建输入张量和梯度张量    
    tensors = (tensors,) if isinstance(tensors, torch.Tensor) else tuple(tensors)
    inputs = (inputs,) if isinstance(inputs, torch.Tensor) else \
        tuple(inputs) if inputs is not None else tuple()

    # _make_grads 把 grad_tensors 中的元素重新组织成tuple(list(torch.Tensor, ...))的形式
    grad_tensors_ = _tensor_or_tensors_to_tuple(grad_tensors, len(tensors))
    grad_tensors_ = _make_grads(tensors, grad_tensors_)
    if retain_graph is None:
        retain_graph = create_graph

    # 执行后向传播
    Variable._execution_engine.run_backward(
        tensors, grad_tensors_, retain_graph, create_graph, inputs,
        allow_unreachable=True, accumulate_grad=True)  # allow_unreachable flag

Variable._execution_engine.run_backward 这里开始进入了C++世界。

代码语言:javascript
复制
                                Python      +      C++
                                            |
                                            |
                                            |
backward                                    |
    +                                       |
    |                                       |
    |                                       |
    |                                       |
    v                                       |
Variable._execution_engine.run_backward +---------->
                                            |
                                            |
                                            |
                                            |
                                            |
                                            |
                                            |
                                            |
                                            |
                                            |
                                            |
                                            |
                                            |
                                            |
                                            +

2.2 引擎

torch/autograd/variable.py 文件之中,生成了 _execution_engine。

代码语言:javascript
复制
from torch._C import _ImperativeEngine as ImperativeEngine

Variable._execution_engine = ImperativeEngine()

torch/_C/__init__.pyi.in 我们可以看到,C++世界应该去python_engine.cpp寻找答案。

代码语言:javascript
复制
# Defined in torch/csrc/autograd/python_engine.cpp
class _ImperativeEngine:

0x03 c++世界

进入 C++ 世界之后,我们放慢下脚步,先回忆一下支撑系统,否则会因为太复杂而绕晕。

3.1 支撑系统

3.1.1 Edge

Edge 通过function,input_nr 的配对来表示图中的边。

代码语言:javascript
复制
using tensor_list = std::vector<at::Tensor>;
using variable_list = std::vector<Variable>;
using edge_list = std::vector<Edge>;
using saved_variable_list = std::vector<SavedVariable>;
using IndexRange = std::pair<size_t, size_t>;

/// Represents a particular input of a function.
struct Edge {
  Edge() noexcept : function(nullptr), input_nr(0) {}

  Edge(std::shared_ptr<Node> function_, uint32_t input_nr_) noexcept
      : function(std::move(function_)), input_nr(input_nr_) {}

  /// The function this `Edge` points to.
  std::shared_ptr<Node> function; // 本边指向的Node

  /// The identifier of a particular input to the function.
  uint32_t input_nr; //指定本Edge在后向传播之中是function的第几个输入 
};
}} // namespace torch::autograd
3.1.2 Edge 相关函数

torch/csrc/autograd/function.h 这里是边相关的函数。都是 Node 类的函数。

代码语言:javascript
复制
  void set_next_edge(size_t index, Edge edge) {
    update_topological_nr(edge);
    next_edges_[index] = std::move(edge);
  }

  void add_next_edge(Edge edge) {
    update_topological_nr(edge);
    next_edges_.push_back(std::move(edge));
  }

  void set_next_edges(edge_list&& next_edges) {
    next_edges_ = std::move(next_edges);
    for(const auto& next_edge : next_edges_) {
      update_topological_nr(next_edge);
    }
  }

  const Edge& next_edge(size_t index) const noexcept {
    return next_edges_[index];
  }

  const edge_list& next_edges() const noexcept {
    return next_edges_;
  }

  edge_list& next_edges() noexcept {
    return next_edges_;
  }

  uint32_t num_outputs() const noexcept {
    return next_edges_.size();
  }

torch/csrc/jit/runtime/graph_executor.cpp 之中也有一些edge相关函数。

代码语言:javascript
复制
void addOutputForTensor(const at::Tensor& tensor) {
  auto v = Variable(tensor);
  add_next_edge(
      v.defined() ? torch::autograd::impl::gradient_edge(v)
                  : autograd::Edge{});
}

void addOutputForIValue(const IValue& value) {
  if (value.isTensorList()) {
    for (const at::Tensor tensor : value.toTensorList()) {
      addOutputForTensor(tensor);
    }
  } else if (value.isTensor()) {
    addOutputForTensor(value.toTensor());
  } else {
    // We could have None passed here via `Optional[Tensor]`
    add_next_edge(autograd::Edge{});
  }
}

gradient_edge 在前文和本文下面会用到,就是利用一个Variable的梯度和前向传播的输出来构建一个Edge。

代码语言:javascript
复制
Edge gradient_edge(const Variable& self) {
  // If grad_fn is null (as is the case for a leaf node), we instead
  // interpret the gradient function to be a gradient accumulator, which will
  // accumulate its inputs into the grad property of the variable. These
  // nodes get suppressed in some situations, see "suppress gradient
  // accumulation" below. Note that only variables which have `requires_grad =
  // True` can have gradient accumulators.
    
  // self.grad_fn() 这里触发了一个调用
  if (const auto& gradient = self.grad_fn()) { // 这是一个中间节点,gradient 是一个Function,比如可以得到一个SubBackward0实例
    return Edge(gradient, self.output_nr()); // self.output_nr() 表示本Edge是function的第n个输入。前向传播时候的第 n 个输出在反向传播时候就是第 n 个输入。
  } else {
    return Edge(grad_accumulator(self), 0); // 这是一个叶子节点,所以生成一个AccumulateGrad,0表示本Edge是function的第一个输入
  }
}
3.1.3 Python 扩展

我们接下来介绍 Python 扩展。一般来说,人们不会用C直接编写Python模块,而是直接写C模块,然后包装一下让Python可以直接调用,过程大致是:

  1. C 语言引入 Python.h 头文件。
  2. 编写封装函数,该函数处理从 Python 世界传入的参数。
  3. C 语言实现功能逻辑。
  4. 把 C 语言的返回值包装成 Python 对象。
  5. 在 PyMethodDef 结构体中注册所需要的函数。
  6. 在初始化方法中注册模块名。
  7. 把 C 源文件编译成链接库以供Python使用。

PyMethodDef 的定义如下:

代码语言:javascript
复制
typedef PyObject *(*PyCFunction)(PyObject *, PyObject *);

struct PyMethodDef {
    const char  *ml_name;   /* The name of the built-in function/method */
    PyCFunction ml_meth;    /* The C function that implements it */
    int         ml_flags;   /* Combination of METH_xxx flags, which mostly
                               describe the args expected by the C func */
    const char  *ml_doc;    /* The __doc__ attribute, or NULL */
};
typedef struct PyMethodDef PyMethodDef;

3.2 引入

3.2.1 初始化

在 torch/csrc/Module.cpp 之中,initModule 会进行 C++ 世界的初始化。这是一个庞大的函数,对于本文,我们只关注 THPFunction_initModule 和 THPEngine_initModule,省略了众多代码。

代码语言:javascript
复制
PyObject* initModule() {

  ......
      
  ASSERT_TRUE(THPFunction_initModule(module));
  ASSERT_TRUE(THPEngine_initModule(module));

  ......
    
}
3.2.1.1 初始化继承体系

初始化时候,THPFunction_initModule(module) 创建了torch._C._FunctionBase

代码语言:javascript
复制
bool THPFunction_initModule(PyObject *module)
{
  if (PyType_Ready(&THPFunctionType) < 0)
    return false;
  Py_INCREF(&THPFunctionType);
  
  // 创建了`torch._C._FunctionBase`
  PyModule_AddObject(module, "_FunctionBase", (PyObject *)&THPFunctionType);
  return true;
}

而在torch/autograd/function.py中,有以下两个类以torch._C._FunctionBase为基类:

代码语言:javascript
复制
class Function(with_metaclass(FunctionMeta, _C._FunctionBase, _ContextMethodMixin, _HookMixin))
class BackwardCFunction(_C._FunctionBase, _ContextMethodMixin, _HookMixin)

这个Function继承体系就构成了DAG的基础。

3.2.2.2 初始化引擎

THPEngine_initModule(module) 创建了torch._C._EngineBase_EngineBase这个类负责动态图执行之前的预处理,_EngineBase**会将torch.autograd的backward之类的请求预处理后送给真正的Engine去执行**。

代码语言:javascript
复制
PyObject* initModule() {
  ......
  ASSERT_TRUE(THPVariable_initModule(module)); 
  ASSERT_TRUE(THPFunction_initModule(module));
  ASSERT_TRUE(THPEngine_initModule(module)); // 这里初始化引擎
}

THPEngine_initModule 通过函数**PyModule_AddObject** 把 THPEngineType 这个对象注册到模块 module(一个PyObject类型) 之中,命名为 _ImperativeEngine**。对应的就是 Python端的** _ImperativeEngine

代码语言:javascript
复制
bool THPEngine_initModule(PyObject *module)
{
#ifndef _WIN32
  if (pthread_atfork(nullptr, nullptr, child_atfork) != 0) {
    throw std::runtime_error("unable to set pthread_atfork handler");
  }
#endif
  if (PyType_Ready(&THPEngineType) < 0)
    return false;
  Py_INCREF(&THPEngineType);
  
  // 为 Python 注册了引擎
  PyModule_AddObject(module, "_ImperativeEngine", (PyObject *)&THPEngineType);
  set_default_engine_stub(python::PythonEngine::get_python_engine);
  return true;
}

THPEngineType 定义如下,可以看出来,生成的实例是 "torch._C._EngineBase"。

代码语言:javascript
复制
PyTypeObject THPEngineType = {
  PyVarObject_HEAD_INIT(nullptr, 0)
  "torch._C._EngineBase",                      /* tp_name */
  sizeof(THPEngine),                           /* tp_basicsize */
  0,                                           /* tp_itemsize */
  nullptr,                                     /* tp_dealloc */
  0,                                           /* tp_vectorcall_offset */
  nullptr,                                     /* tp_getattr */
  nullptr,                                     /* tp_setattr */
  nullptr,                                     /* tp_reserved */
  nullptr,                                     /* tp_repr */
  nullptr,                                     /* tp_as_number */
  nullptr,                                     /* tp_as_sequence */
  nullptr,                                     /* tp_as_mapping */
  nullptr,                                     /* tp_hash  */
  nullptr,                                     /* tp_call */
  nullptr,                                     /* tp_str */
  nullptr,                                     /* tp_getattro */
  nullptr,                                     /* tp_setattro */
  nullptr,                                     /* tp_as_buffer */
  Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,    /* tp_flags */
  nullptr,                                     /* tp_doc */
  nullptr,                                     /* tp_traverse */
  nullptr,                                     /* tp_clear */
  nullptr,                                     /* tp_richcompare */
  0,                                           /* tp_weaklistoffset */
  nullptr,                                     /* tp_iter */
  nullptr,                                     /* tp_iternext */
  THPEngine_methods,                           /* tp_methods */
  nullptr,                                     /* tp_members */
  nullptr,                                     /* tp_getset */
  nullptr,                                     /* tp_base */
  nullptr,                                     /* tp_dict */
  nullptr,                                     /* tp_descr_get */
  nullptr,                                     /* tp_descr_set */
  0,                                           /* tp_dictoffset */
  nullptr,                                     /* tp_init */
  nullptr,                                     /* tp_alloc */
  THPEngine_new                                /* tp_new */
};
3.2.3 与Python世界联系起来

既然 C++ 的引擎已经和 Python 的引擎联系了起来,我们再看看引擎的具体函数。

对于torch._C._EngineBase,其成员函数是 THPEngine_methods。THPEngine_methods 的类型就是我们前面介绍的 PyMethodDef,用来进行 Python 拓展。这里定义了 run_backward,queue_callback 和 is_checkpoint_valid。我们回忆一下,run_backward 就是 Python世界的切入点

代码语言:javascript
复制
static struct PyMethodDef THPEngine_methods[] = {
  {(char*)"run_backward",
    castPyCFunctionWithKeywords(THPEngine_run_backward), // 与Python对应
    METH_VARARGS | METH_KEYWORDS, nullptr},
  {(char*)"queue_callback", THPEngine_queue_callback, METH_O, nullptr},
  {(char*)"is_checkpoint_valid", THPEngine_is_checkpoint_valid, METH_NOARGS, nullptr},
  {nullptr}
};

按照前面 PyMethodDef 的定义有:"run_backward" 是方法名字,THPEngine_run_backward 是对应的C语言方法。所以,Python 世界的 Variable._execution_engine.run_backward 就对应了 THPEngine_run_backward。

代码语言:javascript
复制
                                                      Python      +      C++
                                                                  |
                                                                  |                     initModule
                                                                  |                          +
                                                                  |                          |
                                                                  |                          |
                                                                  |                          |
                                                                  |                          v
                   backward                                       |                   THPEngine_initModule
                       +                                          |                          +
                       |                                          |                          |
                       |                                          |                          |
                       |                                          |                          |
                       v                                          |                          v
                   Variable._execution_engine.run_backward        |   PyModule_AddObject(module, "_ImperativeEngine", &THPEngineType)
                                               +                  |                          +
                                               |                  |                          |
                                               |                  |                          |
                                               |                  |                          v
                                               |                  |
                                               |                  |       +----------------------------------------------------------+
                                               v                  |       | module                                                   |
                                                                  |       |                                                          |
                                 +-------------------------+      |       |   +---------------------------------------------------+  |
                                 | _ImperativeEngine       |      |       |   | _ImperativeEngine                                 |  |
Variable._execution_engine +---> |                         |      |       |   |                                                   |  |
                                 |                         |      |       |   |  +----------------------------------------------+ |  |
                                 |                         |      |       |   |  | THPEngine_methods                            | |  |
                                 |                         |      |       |   |  |                                              | |  |
                                 |                         |      |       |   |  |                                              | |  |
                                 |        run_backward +----------------------------->  "run_backward" : THPEngine_run_backward | |  |
                                 |                         |      |       |   |  |                                              | |  |
                                 |                         |      |       |   |  +----------------------------------------------+ |  |
                                 +-------------------------+      |       |   |                                                   |  |
                                                                  |       |   +---------------------------------------------------+  |
                                                                  |       |                                                          |
                                                                  +       +----------------------------------------------------------+

手机如下:

于是我们要在 C++ 世界分析 THPEngine_run_backward。

3.3 C++引擎入口

THPEngine_run_backward 是 C++ 引擎的入口,位于:torch/csrc/autograd/python_engine.cpp。

主要逻辑如下:

  • 首先,是通过函数PyArg_ParseTupleAndKeywords对输入的参数重新解析,并赋值给新定义的变量:
代码语言:txt
复制
- 新的变量为:`tensors`,`grad_tensors`,`keep_graph`,`create_graph`,`inputs`以及`allow_unreachable`。比如 inputs就是一个vector。
- python世界中的输入是 torch.autograd.backward(tensors, grad\_tensors),这些参数分别转换被成了C++世界中的tensors和grad\_tensors变量。这两个变量在C++中的类型是PyObject,并且size为1。PyObject是任何python对象的基类,在本方法之中,tensors和grad\_tensors 其实是THPVariable类的实例。从输入获取输入张量和梯度张量,主要是检查tensors和grad_tensors的变量类型以及tuple size是否一致。
  • 依据输入构建了三个变量 edge_list rootsoutput_edgesvariable_list grads,这三个分别是反向传播(求导)的起始点,模型最终输出的边信息和梯度。
代码语言:txt
复制
- roots是包含有前向传播输出节点的 gradient\_edge()(即输出节点的`(grad_fn_, 0)`)的 vector。需要注意,`grad_fn_` 是 Node 的派生类,所以 roots 就是Node。
- grads 是前向传播产生的梯度,如果没有配置,则初始化为(tensor(1.),)。
- output\_edges 是依据前向传播输入节点 inputs 构建的后向传播输出边。调用outputs = engine.execute(roots, grads, keep_graph, create_graph, output_edges),正式进入反向传播引擎。

具体代码如下:

代码语言:javascript
复制
// Implementation of torch._C._EngineBase.run_backward
PyObject *THPEngine_run_backward(PyObject *self, PyObject *args, PyObject *kwargs)
{
  HANDLE_TH_ERRORS
  PyObject *tensors = nullptr;
  PyObject *grad_tensors = nullptr;
  unsigned char keep_graph = 0;
  unsigned char create_graph = 0;
  PyObject *inputs = nullptr;
  unsigned char allow_unreachable = 0;
  unsigned char accumulate_grad = 0; // Indicate whether to accumulate grad into leaf Tensors or capture
  const char *accepted_kwargs[] = { // NOLINT
      "tensors", "grad_tensors", "keep_graph", "create_graph", "inputs",
      "allow_unreachable", "accumulate_grad", nullptr
  };
    
  // 对输入的参数重新解析并赋值给新定义的变量tensors,grad_tensors等等,比如 inputs就是一个vector 
  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OObb|Obb", (char**)accepted_kwargs,
        &tensors, &grad_tensors, &keep_graph, &create_graph, &inputs, &allow_unreachable, &accumulate_grad))
    return nullptr;

  // 从输入获取输入张量和梯度张量,主要是检查tensors和grad_tensors的变量类型以及tuple size是否一致。 
  Py_ssize_t num_tensors = PyTuple_GET_SIZE(tensors);
  Py_ssize_t num_gradients = PyTuple_GET_SIZE(grad_tensors);
  THPUtils_assert(num_tensors == num_gradients, "got %ld tensors and %ld "
      "gradients", num_tensors, num_gradients);

  // The user either called autograd.backward(...) or autograd.grad(...) to get here
  bool backward_api_called = accumulate_grad;

  // 我们回忆一下定义
  // using variable_list = std::vector<Variable>;
  // using edge_list = std::vector<Edge>;
  edge_list roots; // 就是反向传播的起点(根节点)
  roots.reserve(num_tensors);
  variable_list grads; // 就是反向传播的梯度
  grads.reserve(num_tensors);
    
  // 依据输入来配置roots和grads  
  for (int i = 0; i < num_tensors; i++) {
    // tensors是输入节点,即前向传播图的输出  
    PyObject *_tensor = PyTuple_GET_ITEM(tensors, i);
    THPUtils_assert(THPVariable_Check(_tensor), "element %d of tensors "
	  // 得到 gradient_edge = Edge(grad_fn(), output_nr())
    auto gradient_edge = torch::autograd::impl::gradient_edge(variable);
    roots.push_back(std::move(gradient_edge)); // root增加一个Edge

    PyObject *grad = PyTuple_GET_ITEM(grad_tensors, i);
    if (THPVariable_Check(grad)) {
      const Variable& grad_var = THPVariable_Unpack(grad);
      if (grad_var.has_names()) {
        TORCH_WARN(
            "Autograd was passed a named grad tensor with dims ", grad_var.names(),
            ". Autograd does not yet support named tensor semantics, so all names ",
            "will be ignored. In practice all computed gradients will still be correct "
            "according to regular tensor semantics.");
      }
      grads.push_back(grad_var); // 增加一个梯度
    } 
  }

  // 构建一个输出Edge列表                 
  std::vector<Edge> output_edges;
  if (inputs != nullptr) {
    int num_inputs = PyTuple_GET_SIZE(inputs);
    output_edges.reserve(num_inputs);
    // 遍历输入列表  
    for (int i = 0; i < num_inputs; ++i) {
      PyObject *input = PyTuple_GET_ITEM(inputs, i);
      const auto& tensor = THPVariable_Unpack(input);
      const auto output_nr = tensor.output_nr();
      auto grad_fn = tensor.grad_fn();
      if (!grad_fn) {
        // 获取 grad_accumulator,用来判断是否是叶子节点  
        grad_fn = torch::autograd::impl::try_get_grad_accumulator(tensor);
      }

      if (!grad_fn) {
        // NOTE [ Autograd Unreachable Input ]
        // Since input has no grad_accumulator, its guaranteed to be unreachable.
        // We initialize an edge pointing to a non-nullptr Node so nodes in the graph
        // (e.g., mul when an operand is scalar) that have edges pointing to nullptr
        // don't get erroneously assigned `needed = True` in exec_info.
        // 说明是叶子节点  
        output_edges.emplace_back(std::make_shared<Identity>(), 0);
      } else {
        // 是中间节点  
        output_edges.emplace_back(grad_fn, output_nr);
      }
    }
  }

  // 现在,roots是包含有(前向传播输出节点的grad_fn_, 0)的vector。
  // grads 是前向传播产生的梯度,如果没有配置,则初始化为(tensor(1.),)
  // output_edges 是依据前向传播输入节点 input 构建的后向传播输出边                  
  variable_list outputs;
  {
    pybind11::gil_scoped_release no_gil;
    auto& engine = python::PythonEngine::get_python_engine();
    // 进入引擎执行  
    outputs = engine.execute(roots, grads, keep_graph, create_graph, accumulate_grad, output_edges);
  }

  if (!backward_api_called && inputs != nullptr) {
    int num_inputs = PyTuple_GET_SIZE(inputs);
    THPObjectPtr py_outputs {PyTuple_New(num_inputs)};
    if (!py_outputs) return nullptr;
    for (int i = 0; i < num_inputs; i++) {
      PyTuple_SET_ITEM(py_outputs.get(), i, THPVariable_Wrap(outputs[i]));
    }
    return py_outputs.release();
  } else {
    Py_RETURN_NONE;
  }
  END_HANDLE_TH_ERRORS
}

我们接下来分析 THPEngine_run_backward 用到的几个辅助函数。

3.3.1 try_get_grad_accumulator

上面代码之中,有 grad_fn = torch::autograd::impl::try_get_grad_accumulator(tensor) 来获取计算梯度的方法。其实是用它来判断是否是叶子节点,只有非叶子节点 grad_accumulator_才不为空。

try_get_grad_accumulator 返回的是个指向Node对象的指针 : std::weak_ptr<Node> grad_accumulator_。就是如何计算梯度。

具体逻辑是:

  • 先通过函数get_autograd_meta返回一个AutogradMeta结构体。
  • 然后访问结构体中的成员变量grad_accumulator_,而grad_accumulator_是一个指向类型为Node对象的std::weak_ptr指针。
  • 最后通过lock()函数创建一个std::shared_ptr来管理对象。
代码语言:javascript
复制
  std::shared_ptr<Node> try_get_grad_accumulator(const Variable& self) {
    if (get_autograd_meta(self)) {
      return get_autograd_meta(self)->grad_accumulator_.lock();
    } else {
      return nullptr;
    }
  }
3.3.2 gradient_edge

上面代码之中,gradient_edge 被用来在输入 tensor 基础之上构建一个 Edge。

代码语言:javascript
复制
auto gradient_edge = torch::autograd::impl::gradient_edge(variable);
roots.push_back(std::move(gradient_edge)); // root增加一个Edge

gradient_edge 具体如下:

代码语言:javascript
复制
Edge gradient_edge(const Variable& self) {
  // If grad_fn is null (as is the case for a leaf node), we instead
  // interpret the gradient function to be a gradient accumulator, which will
  // accumulate its inputs into the grad property of the variable. These
  // nodes get suppressed in some situations, see "suppress gradient
  // accumulation" below. Note that only variables which have `requires_grad =
  // True` can have gradient accumulators.
  if (const auto& gradient = self.grad_fn()) {
    return Edge(gradient, self.output_nr());
  } else {
    return Edge(grad_accumulator(self), 0);
  }
}
3.3.3 output_edges

上面代码之中, std::vector output_edges 构建一个输出Edge列表。

在拿到 grad_accumulator_ 之后,会赋予为 grad_fn,这样就用来判断是否为叶子节点。然后分别构建叶子节点和中间节点,放到 output_edges 之中。

代码语言:javascript
复制
      if (!grad_fn) {
        // NOTE [ Autograd Unreachable Input ]
        // Since input has no grad_accumulator, its guaranteed to be unreachable.
        // We initialize an edge pointing to a non-nullptr Node so nodes in the graph
        // (e.g., mul when an operand is scalar) that have edges pointing to nullptr
        // don't get erroneously assigned `needed = True` in exec_info.
        output_edges.emplace_back(std::make_shared<Identity>(), 0); // 叶子节点
      } else {
        output_edges.emplace_back(grad_fn, output_nr); // 非叶子节点
      }

我们看看构建output_edges的变量 grad_fn 和 output_nr,看看它们的由来。

grad_fn是通过 try_get_grad_accumulator 方法得到的一个指向Node对象的std::shared_ptr指针,就是如何计算梯度的操作。

output_pr 由如下设置,其最终得到的是结构体AutogradMeta中的成员变量uint32_t output_nr_。

代码语言:javascript
复制
const auto output_nr = tensor.output_nr();

emplace_back()函数向容器中中加入临时对象, 临时对象原地构造,没有赋值或移动的操作。

回忆一下 Edge 的定义。所以可以看出来,emplace_back()就是使用了这些输入生成了一个 Edge。

代码语言:javascript
复制
/// Represents a particular input of a function.
struct Edge {
  Edge() noexcept : function(nullptr), input_nr(0) {}
  Edge(std::shared_ptr<Node> function_, uint32_t input_nr_) noexcept
      : function(std::move(function_)), input_nr(input_nr_) {}

  /// The function this `Edge` points to.
  std::shared_ptr<Node> function; // 指向的Node

  /// The identifier of a particular input to the function.
  uint32_t input_nr; //指定本Edge在后向传播之中是function的第几个输入 
};

输入转换如下图,可以看出来输入从 Python 如何进行转换最终传入C++引擎,以如下变量为例:

  • Python 的 tensors 被转换为 C++ 的 root。
  • Python 的 grad_tensors 被转换为 C++ 的 grads。
  • Python 的 inputs 被转换为 C++ 的 output_edges。
  • 最终把这三个变量传递给引擎:PythonEngine.execute(roots, grads, keep_graph, create_graph, accumulate_grad, output_edges)。
代码语言:javascript
复制
                  backward(tensors, grad_tensors, inputs)
                              +             +        +
                              |             |        |
Python                        |             |        |
                              |             |        |
+------------------------------------------------------------------------------------------+
                              |             |        |
C++   THPEngine_run_backward  |             |        |
                              |             |        +-----------------------------+
                              |             |                                      |
                              |             |                                      |
                              |             +-----------------------------+        |
                              v                                           |        |
                                                                          |        |
+------root = [(tensor_1.grad_fn_, 0),...,(tensor_n.grad_fn_, 0)]         |        |
|                                                                         |        |
|                                                                         |        |
|                                                                         |        |
|   +--grads = [grad_tensor_1,...,grad_tensor_n  ] <----------------------+        |
|   |                                                                              |
|   |                                                                              |
|   |                                                                              v
|   |  output_edges = [(input_1.grad_fn_, output_nr_1),...,(input_n.grad_fn_, output_nr_n)]
|   |                                                                              +
|   +-------------------------+                                                    |
|                             |                                                    |
|                             |                                                    |
+----------------------+      |                                                    |
                       |      |                                                    |
                       v      v                                                    v

PythonEngine.execute(roots, grads, keep_graph, create_graph, accumulate_grad, output_edges)

3.4 PythonEngine

前面 THPEngine_run_backward 代码有如下,我们可以看到,THPEngine_run_backward 最终调用到了 PythonEngine 的处理逻辑。

代码语言:javascript
复制
auto& engine = python::PythonEngine::get_python_engine();
// 进入引擎执行  
outputs = engine.execute(roots, grads, keep_graph, create_graph, accumulate_grad, output_edges);
3.4.1 获取引擎

get_python_engine这里定义了一个静态变量。整个PyTorch程序全局只维护一个Engine实例,也就是PythonEngine实例。

代码语言:javascript
复制
Engine& PythonEngine::get_python_engine() {
  static PythonEngine engine;
  // This is "probably" thread-safe because the flag is set in a fork handler
  // before any threads are created, and this function is only called with the
  // GIL held. However, using fork + threads is playing with fire so this is
  // more of a "best effort" thing. For example, if the fork occurs while the
  // backwards threads hold a lock, we'll probably deadlock in the engine
  // destructor.
  if (_reinitialize_engine) {
    engine.release_workers();
    engine.~PythonEngine();
    new (&engine) torch::autograd::python::PythonEngine();
    _reinitialize_engine = false;
  }
  return engine;
}
3.4.2 定义

所以我们来看看PythonEngine 定义。PythonEngine 是 Engine 的派生类,相当于封装了一下。主要是针对python世界的特点做了一些定制,比如:PythonEngine子类重写了父类的execute,把C++异常翻译为Python异常的功能,核心工作还是由Engine基类来完成:

代码语言:javascript
复制
struct PythonEngine : public Engine {
  static Engine& get_python_engine();
  ~PythonEngine() override;
  void thread_init(int device,
      const std::shared_ptr<ReadyQueue>& ready_queue,
      bool should_increment) override;
  void thread_on_exception(
      std::shared_ptr<GraphTask> graph_task,
      const std::shared_ptr<Node>& fn,
      std::exception& e) override;
  variable_list execute(
      const edge_list& roots,
      const variable_list& inputs,
      bool keep_graph,
      bool create_graph,
      bool accumulate_grad,
      const edge_list& outputs = {}) override;

  std::shared_ptr<at::ivalue::Future> execute_with_graph_task(
      const std::shared_ptr<GraphTask>& graph_task,
      std::shared_ptr<Node> graph_root,
      InputBuffer&& input_buffer) override;

  std::unique_ptr<AnomalyMetadata> make_anomaly_metadata() override;
  private:
    PythonEngine();
};

execute 代码如下,于是从下文开始,我们要看看 Engine 是如何运作的。

代码语言:javascript
复制
variable_list PythonEngine::execute(
    const edge_list& roots,
    const variable_list& inputs,
    bool keep_graph,
    bool create_graph,
    bool accumulate_grad,
    const edge_list& outputs) {
  try {
    return Engine::execute(roots, inputs, keep_graph, create_graph, accumulate_grad, outputs);
  } catch (python_error& e) {
    e.restore();
    throw;
  }
}

目前逻辑拓展如下:

代码语言:javascript
复制
                  backward(tensors, grad_tensors, inputs)
                              +             +        +
                              |             |        |
Python                        |             |        |
                              |             |        |
+------------------------------------------------------------------------------------------+
                              |             |        |
C++   THPEngine_run_backward  |             |        |
                              |             |        +-----------------------------+
                              |             |                                      |
                              |             |                                      |
                              |             +-----------------------------+        |
                              v                                           |        |
                                                                          |        |
+------root = [(tensor_1.grad_fn_, 0),...,(tensor_n.grad_fn_, 0)]         |        |
|                                                                         |        |
|                                                                         |        |
|                                                                         |        |
|   +--grads = [grad_tensor_1,...,grad_tensor_n  ] <----------------------+        |
|   |                                                                              |
|   |                                                                              |
|   |                                                                              v
|   |  output_edges = [(input_1.grad_fn_, output_nr_1),...,(input_n.grad_fn_, output_nr_n)]
|   |                                                                              +
|   +-------------------------+                                                    |
|                             |                                                    |
|                             |                                                    |
+----------------------+      |                                                    |
                       |      |                                                    |
                       v      v                                                    v

PythonEngine.execute(roots, grads, keep_graph, create_graph, accumulate_grad, output_edges)
               +       +       +                                                   +
               |       |       |                                                   |
               |       |       |                                                   |
               v       v       v                                                   v
     Engine::execute(roots, inputs, keep_graph, create_graph, accumulate_grad, outputs)

手机如下:

3.5 另一调用途径

最后,我们再插入一个 run_backward 进行分析。

run_backward 位于 torch/csrc/autograd/autograd.cpp。这里应该是专门为了 C++ 世界直接调用的需要,与我们之前通过 Python 迂回调用不同。

代码语言:javascript
复制
void backward(
    const variable_list& tensors,
    const variable_list& grad_tensors,
    c10::optional<bool> retain_graph,
    bool create_graph,
    const variable_list& inputs) {
  variable_list gradients = _make_grads(tensors, grad_tensors);
  if (!retain_graph) {
    retain_graph = create_graph;
  }
  run_backward(tensors, gradients, retain_graph.value(), create_graph, inputs, /*allow_unused=*/true, /*accumulate_grad=*/true);
}

variable_list grad(
    const variable_list& outputs,
    const variable_list& inputs,
    const variable_list& grad_outputs,
    c10::optional<bool> retain_graph,
    bool create_graph,
    bool allow_unused) {
  variable_list gradients = _make_grads(outputs, grad_outputs);
  if (!retain_graph) {
    retain_graph = create_graph;
  }
  return run_backward(
    outputs, gradients, retain_graph.value(), create_graph, inputs, allow_unused, /*accumulate_grad=*/false);
}

run_backward 最后也调用了 Engine::get_default_engine().execute。

代码语言:javascript
复制
variable_list run_backward(
    const variable_list& outputs,
    const variable_list& grad_outputs,
    bool keep_graph,
    bool create_graph,
    const variable_list& inputs,
    bool allow_unused,
    bool accumulate_grad) {
  size_t num_tensors = outputs.size();
  edge_list roots;
  roots.reserve(num_tensors);
  for (size_t i = 0; i < num_tensors; i++) {
    const Variable& output = outputs[i];
    auto gradient_edge = impl::gradient_edge(output);
    roots.push_back(std::move(gradient_edge));
  }

  edge_list output_edges;
  if (!inputs.empty()) {
    size_t num_inputs = inputs.size();
    output_edges.reserve(num_inputs);
    for (size_t i = 0; i < num_inputs; ++i) {
      const Variable& input = inputs[i];
      const auto output_nr = input.output_nr();
      auto grad_fn = input.grad_fn();
      if (!grad_fn) {
        grad_fn = impl::try_get_grad_accumulator(input);
      }
      if (!grad_fn) {
        // See NOTE [ Autograd Unreachable Input ] for details
        output_edges.emplace_back(std::make_shared<Identity>(), 0);
      } else {
        output_edges.emplace_back(grad_fn, output_nr);
      }
    }
  }

  // 调用了引擎代码
  variable_list grad_inputs = Engine::get_default_engine().execute(
      roots, grad_outputs, keep_graph, create_graph, accumulate_grad, output_edges);
  // check if grad_inputs contains None or not base on the allow_unused flag
  if (!inputs.empty() && !allow_unused) {
    size_t num_inputs = inputs.size();
    for (size_t i = 0; i < num_inputs; ++i) {
      TORCH_CHECK(
          grad_inputs[i].defined(),
          "One of the "
          "differentiated Tensors appears to not have been used "
          "in the graph. Set allow_unused=True if this is the "
          "desired behavior.");
    }
  }
  return grad_inputs;
}

至此,调用过程分析完毕,其核心就是调用引擎函数进行处理,所以下一篇我们来开始分析引擎。

0xFF 参考

使用C写Python的模块

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-10-25 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 源码解析 Pytorch 如何实现后向传播 (1)---- 调用引擎
    • 0x00 摘要
      • 0x01 前文回顾
        • 1.1 训练过程
        • 1.2 例子
        • 1.3 源码剖析
      • 0x02 Python 调用过程
        • 2.1 调用
        • 2.2 引擎
      • 0x03 c++世界
        • 3.1 支撑系统
        • 3.2 引入
        • 3.3 C++引擎入口
        • 3.4 PythonEngine
        • 3.5 另一调用途径
      • 0xFF 参考
      相关产品与服务
      容器服务
      腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档