前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布

crf

作者头像
致Great
发布2022-01-06 14:33:35
3310
发布2022-01-06 14:33:35
举报
文章被收录于专栏:程序生活程序生活
代码语言:javascript
复制
import torch

import torch.nn as nn
import torch.optim as optim
torch.manual_seed(1)
# some helper functions
def argmax(vec):
    # return the argmax as a python int
    # 第1维度上最大值的下标
    # input: tensor([[2,3,4]])
    # output: 2
    _, idx = torch.max(vec,1)
    return idx.item()
def prepare_sequence(seq,to_ix):
    # 文本序列转化为index的序列形式
    idxs = [to_ix[w] for w in seq]
    return torch.tensor(idxs, dtype=torch.long)
def log_sum_exp(vec):
    #compute log sum exp in a numerically stable way for the forward algorithm
    # 用数值稳定的方法计算正演算法的对数和exp
    # input: tensor([[2,3,4]])
    # max_score_broadcast: tensor([[4,4,4]])
    max_score = vec[0, argmax(vec)]
    max_score_broadcast = max_score.view(1,-1).expand(1,vec.size()[1])
    return max_score+torch.log(torch.sum(torch.exp(vec-max_score_broadcast)))
START_TAG = "<s>"
END_TAG = "<e>"
# create model
class BiLSTM_CRF(nn.Module):
    def __init__(self,vocab_size, tag2ix, embedding_dim, hidden_dim):
        super(BiLSTM_CRF,self).__init__()
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.tag2ix = tag2ix
        self.tagset_size = len(tag2ix)
        self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim//2, num_layers=1, bidirectional=True)
        # maps output of lstm to tog space
        self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
        # matrix of transition parameters
        # entry i, j is the score of transitioning to i from j
        # tag间的转移矩阵,是CRF层的参数
        self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))
        # these two statements enforce the constraint that we never transfer to the start tag
        # and we never transfer from the stop tag
        self.transitions.data[tag2ix[START_TAG], :] = -10000
        self.transitions.data[:, tag2ix[END_TAG]] = -10000
        self.hidden = self.init_hidden()
    def init_hidden(self):
        return (torch.randn(2, 1,self.hidden_dim//2),
                torch.randn(2, 1,self.hidden_dim//2))
    def _forward_alg(self, feats):
        # to compute partition function
        # 求归一化项的值,应用动态归化算法
        init_alphas = torch.full((1,self.tagset_size), -10000.)# tensor([[-10000.,-10000.,-10000.,-10000.,-10000.]])
        # START_TAG has all of the score
        init_alphas[0][self.tag2ix[START_TAG]] = 0#tensor([[-10000.,-10000.,-10000.,0,-10000.]])
        forward_var = init_alphas
        for feat in feats:
            #feat指Bi-LSTM模型每一步的输出,大小为tagset_size
            alphas_t = []
            for next_tag in range(self.tagset_size):
                # 取其中的某个tag对应的值进行扩张至(1,tagset_size)大小
                # 如tensor([3]) -> tensor([[3,3,3,3,3]])
                emit_score = feat[next_tag].view(1,-1).expand(1,self.tagset_size)
                # 增维操作
                trans_score = self.transitions[next_tag].view(1,-1)
                # 上一步的路径和+转移分数+发射分数
                next_tag_var = forward_var + trans_score + emit_score
                # log_sum_exp求和
                alphas_t.append(log_sum_exp(next_tag_var).view(1))
            # 增维
            forward_var = torch.cat(alphas_t).view(1,-1)
        terminal_var = forward_var+self.transitions[self.tag2ix[END_TAG]]
        alpha = log_sum_exp(terminal_var)
        #归一项的值
        return alpha
    def _get_lstm_features(self,sentence):
        self.hidden = self.init_hidden()
        embeds = self.word_embeds(sentence).view(len(sentence),1,-1)
        lstm_out, self.hidden = self.lstm(embeds, self.hidden)
        lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
        lstm_feats = self.hidden2tag(lstm_out)
        return lstm_feats
    def _score_sentence(self,feats,tags):
        # gives the score of a provides tag sequence
        # 求某一路径的值
        score = torch.zeros(1)
        tags = torch.cat([torch.tensor([self.tag2ix[START_TAG]], dtype=torch.long), tags])
        for i , feat in enumerate(feats):
            score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
        score = score + self.transitions[self.tag2ix[END_TAG], tags[-1]]
        return score
    def _viterbi_decode(self, feats):
        # 当参数确定的时候,求解最佳路径
        backpointers = []
        init_vars = torch.full((1,self.tagset_size),-10000.)# tensor([[-10000.,-10000.,-10000.,-10000.,-10000.]])
        init_vars[0][self.tag2ix[START_TAG]] = 0#tensor([[-10000.,-10000.,-10000.,0,-10000.]])
        forward_var = init_vars
        for feat in feats:
            bptrs_t = [] # holds the back pointers for this step
            viterbivars_t = [] # holds the viterbi variables for this step
            for next_tag in range(self.tagset_size):
                next_tag_var = forward_var + self.transitions[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
            forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
            backpointers.append(bptrs_t)
        # Transition to STOP_TAG
        terminal_var = forward_var + self.transitions[self.tag2ix[END_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0][best_tag_id]
        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag2ix[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path
    def neg_log_likelihood(self, sentence, tags):
        # 由lstm层计算得的每一时刻属于某一tag的值
        feats = self._get_lstm_features(sentence)
        # 归一项的值
        forward_score = self._forward_alg(feats)
        # 正确路径的值
        gold_score = self._score_sentence(feats, tags)
        return forward_score - gold_score# -(正确路径的分值  -  归一项的值)
    def forward(self, sentence):  # dont confuse this with _forward_alg above.
        # Get the emission scores from the BiLSTM
        lstm_feats = self._get_lstm_features(sentence)
        # Find the best path, given the features.
        score, tag_seq = self._viterbi_decode(lstm_feats)
        return score, tag_seq
if __name__ == "__main__":
    EMBEDDING_DIM = 5
    HIDDEN_DIM = 4
    # Make up some training data
    training_data = [(
        "the wall street journal reported today that apple corporation made money".split(),
        "B I I I O O O B I O O".split()
    ), (
        "georgia tech is a university in georgia".split(),
        "B I O O O O B".split()
    )]
    word2ix = {}
    for sentence, tags in training_data:
        for word in sentence:
            if word not in word2ix:
                word2ix[word] = len(word2ix)
    tag2ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, END_TAG: 4}
    model = BiLSTM_CRF(len(word2ix), tag2ix, EMBEDDING_DIM, HIDDEN_DIM)
    optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
    # Check predictions before training
    # 输出训练前的预测序列
    with torch.no_grad():
        precheck_sent = prepare_sequence(training_data[0][0], word2ix)
        precheck_tags = torch.tensor([tag2ix[t] for t in training_data[0][1]], dtype=torch.long)
        print(model(precheck_sent))
    # Make sure prepare_sequence from earlier in the LSTM section is loaded
    for epoch in range(300):  # again, normally you would NOT do 300 epochs, it is toy data
        for sentence, tags in training_data:
            # Step 1. Remember that Pytorch accumulates gradients.
            # We need to clear them out before each instance
            model.zero_grad()
            # Step 2. Get our inputs ready for the network, that is,
            # turn them into Tensors of word indices.
            sentence_in = prepare_sequence(sentence, word2ix)
            targets = torch.tensor([tag2ix[t] for t in tags], dtype=torch.long)
            # Step 3. Run our forward pass.
            loss = model.neg_log_likelihood(sentence_in, targets)
            # Step 4. Compute the loss, gradients, and update the parameters by
            # calling optimizer.step()
            loss.backward()
            optimizer.step()
    # Check predictions after training
    with torch.no_grad():
        precheck_sent = prepare_sequence(training_data[0][0], word2ix)
        print(model(precheck_sent))
    # 输出结果
    # (tensor(-9996.9365), [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
    # (tensor(-9973.2725), [0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 2])
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2022.01.03 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档