前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >「深度学习一遍过」必修23:基于ResNet18的MNIST手写数字识别

「深度学习一遍过」必修23:基于ResNet18的MNIST手写数字识别

作者头像
荣仔_最靓的仔
发布2022-01-10 14:00:26
1.8K0
发布2022-01-10 14:00:26
举报

本专栏用于记录关于深度学习的笔记,不光方便自己复习与查阅,同时也希望能给您解决一些关于深度学习的相关问题,并提供一些微不足道的人工神经网络模型设计思路。 专栏地址:「深度学习一遍过」必修篇

目录

项目 GitHub 地址

项目心得

项目代码


项目 GitHub 地址

Classic_model_examples/2015_ResNet18_MNIST at main · zhao302014/Classic_model_examples · GitHubContribute to zhao302014/Classic_model_examples development by creating an account on GitHub.

https://github.com/zhao302014/Classic_model_examples/tree/main/2015_ResNet18_MNIST

项目心得

  • 2015 年——ResNet:这是由微软研究院的 Kaiming He 等四名华人提出,通过使用 ResNet Unit 成功训练出了更深层次的神经网络。该项目自己搭建了 ResNet18 网络并在 MNIST 手写数字识别项目中得到了应用。通过此次实践,我终于知道了跳层连接是如何连接的了:ResNet “跳层链接” 的代码体现在相同大小和相同特征图之间用 “+” 相连,而不是 concat。concat 操作常用于 inception 结构中,具体而言是用于特征图大小相同二通道数不同的通道合并中,而看起来简单粗暴的 “+” 连接方式则是用于 ResNet 的 “跳层连接” 结构中,具体而言是用于特征图大小相同且通道数相同的特征图合并。这让我想到一句古诗:“绝知此事要躬行” 啊!

项目代码

下面这张图是网上找的,描述的细节是真的赞!

图片来源:resnet18 50网络结构以及pytorch实现代码 - 简书

net.py

代码语言:javascript
复制
#!/usr/bin/python
# -*- coding:utf-8 -*-
# ------------------------------------------------- #
#      作者:赵泽荣
#      时间:2021年9月10日(农历八月初四)
#      个人站点:1.https://zhao302014.github.io/
#              2.https://blog.csdn.net/IT_charge/
#      个人GitHub地址:https://github.com/zhao302014
# ------------------------------------------------- #
import torch
import torch.nn as nn
import torch.nn.functional as F

# --------------------------------------------------------------------------------- #
#  自己搭建一个 ResNet18 模型结构
#   · 提出时间:2015 年(作者:何凯明)
#   · ResNet 解决了深度 CNN 模型难训练的问题
#   · ResNet 在 2015 名声大噪,而且影响了 2016 年 DL 在学术界和工业界的发展方向
#   · ResNet 网络是参考了 VGG19 网络,在其基础上进行了修改,并通过短路机制加入了残差单元
#   · 变化主要体现在 ResNet 直接使用 stride=2 的卷积做下采样,并且用 global average pool 层替换了全连接层
#   · ResNet 的一个重要设计原则是:当 feature map 大小降低一半时,feature map 的数量增加一倍,这保持了网络层的复杂度
#   · ResNet18 的 18 指定的是带有权重的 18 层,包括卷积层和全连接层,不包括池化层和 BN 层
#   · ResNet “跳层链接” 的代码体现在相同大小和相同特征图之间用 “+” 相连,而不是 concat
# --------------------------------------------------------------------------------- #
class MyResNet18(nn.Module):
    def __init__(self):
        super(MyResNet18, self).__init__()
        # 第一层:卷积层
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=7, stride=2, padding=3)
        self.bn1 = nn.BatchNorm2d(64)
        # Max Pooling 层
        self.s1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # 第二、三层:“实线”卷积层
        self.conv2 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(64)
        self.conv3 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1)
        self.bn3 = nn.BatchNorm2d(64)
        # 第四、五层:“实线”卷积层
        self.conv4 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1)
        self.bn4 = nn.BatchNorm2d(64)
        self.conv5 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1)
        self.bn5 = nn.BatchNorm2d(64)
        # 第六、七层:“虚线”卷积层
        self.conv6_1 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1)
        self.bn6_1 = nn.BatchNorm2d(128)
        self.conv7_1 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1)
        self.bn7_1 = nn.BatchNorm2d(128)
        self.conv7 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=1, stride=2, padding=0)
        self.bn7 = nn.BatchNorm2d(128)
        # 第八、九层:“实线”卷积层
        self.conv8 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1)
        self.bn8 = nn.BatchNorm2d(128)
        self.conv9 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1)
        self.bn9 = nn.BatchNorm2d(128)
        # 第十、十一层:“虚线”卷积层
        self.conv10_1 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1)
        self.bn10_1 = nn.BatchNorm2d(256)
        self.conv11_1 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
        self.bn11_1 = nn.BatchNorm2d(256)
        self.conv11 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=1, stride=2, padding=0)
        self.bn11 = nn.BatchNorm2d(256)
        # 第十二 、十三层:“实线”卷积层
        self.conv12 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
        self.bn12 = nn.BatchNorm2d(256)
        self.conv13 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
        self.bn13 = nn.BatchNorm2d(256)
        # 第十四、十五层:“虚线”卷积层
        self.conv14_1 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1)
        self.bn14_1 = nn.BatchNorm2d(512)
        self.conv15_1 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
        self.bn15_1 = nn.BatchNorm2d(512)
        self.conv15 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=1, stride=2, padding=0)
        self.bn15 = nn.BatchNorm2d(512)
        # 第十六 、十七层:“实线”卷积层
        self.conv16 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
        self.bn16 = nn.BatchNorm2d(512)
        self.conv17 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
        self.bn17 = nn.BatchNorm2d(512)
        # avg pooling 层
        self.s2 = nn.AvgPool2d(kernel_size=7, stride=1, padding=0)
        # 第十八层:全连接层
        self.Flatten = nn.Flatten()
        self.f18 = nn.Linear(512, 1000)
        # 为满足该实例另加 ↓
        self.f_output = nn.Linear(1000, 10)

    def forward(self, x):              # shape: torch.Size([1, 3, 224, 224])
        x = self.conv1(x)              # shape: torch.Size([1, 64, 112, 112])
        x = self.bn1(x)                # shape: torch.Size([1, 64, 112, 112])
        x = self.s1(x)                 # shape: torch.Size([1, 64, 56, 56])
        x = self.conv2(x)              # shape: torch.Size([1, 64, 56, 56])
        x = self.bn2(x)                # shape: torch.Size([1, 64, 56, 56])
        x = self.conv3(x)              # shape: torch.Size([1, 64, 56, 56])
        x = self.bn3(x)                # shape: torch.Size([1, 64, 56, 56])
        x = self.conv4(x)              # shape: torch.Size([1, 64, 56, 56])
        x = self.bn4(x)                # shape: torch.Size([1, 64, 56, 56])
        x = self.conv5(x)              # shape: torch.Size([1, 64, 56, 56])
        x = self.bn5(x)                # shape: torch.Size([1, 64, 56, 56])
        x6_1 = self.conv6_1(x)         # shape: torch.Size([1, 128, 28, 28])
        x7_1 = self.conv7_1(x6_1)      # shape: torch.Size([1, 128, 28, 28])
        x7 = self.conv7(x)             # shape: torch.Size([1, 128, 28, 28])
        x = x7 + x7_1                  # shape: torch.Size([1, 128, 28, 28])
        x = self.conv8(x)              # shape: torch.Size([1, 128, 28, 28])
        x = self.conv9(x)              # shape: torch.Size([1, 128, 28, 28])
        x10_1 = self.conv10_1(x)       # shape: torch.Size([1, 256, 14, 14])
        x11_1 = self.conv11_1(x10_1)   # shape: torch.Size([1, 256, 14, 14])
        x11 = self.conv11(x)           # shape: torch.Size([1, 256, 14, 14])
        x = x11 + x11_1                # shape: torch.Size([1, 256, 14, 14])
        x = self.conv12(x)             # shape: torch.Size([1, 256, 14, 14])
        x = self.conv13(x)             # shape: torch.Size([1, 256, 14, 14])
        x14_1 = self.conv14_1(x)       # shape: torch.Size([1, 512, 7, 7])
        x15_1 = self.conv15_1(x14_1)   # shape: torch.Size([1, 512, 7, 7])
        x15 = self.conv15(x)           # shape: torch.Size([1, 512, 7, 7])
        x = x15 + x15_1                # shape: torch.Size([1, 512, 7, 7])
        x = self.conv16(x)             # shape: torch.Size([1, 512, 7, 7])
        x = self.conv17(x)             # shape: torch.Size([1, 512, 7, 7])
        x = self.s2(x)                 # shape: torch.Size([1, 512, 1, 1])
        x = self.Flatten(x)            # shape: shape: torch.Size([1, 512])
        x = self.f18(x)                # shape: torch.Size([1, 1000])
        # 为满足该实例另加 ↓
        x = self.f_output(x)           # shape: torch.Size([1, 10])
        x = F.softmax(x, dim=1)        # shape: torch.Size([1, 10])
        return x

if __name__ == '__main__':
    x = torch.randn(1, 3, 224, 224)
    model = MyResNet18()
    y = model(x)

train.py

代码语言:javascript
复制
#!/usr/bin/python
# -*- coding:utf-8 -*-
# ------------------------------------------------- #
#      作者:赵泽荣
#      时间:2021年9月10日(农历八月初四)
#      个人站点:1.https://zhao302014.github.io/
#              2.https://blog.csdn.net/IT_charge/
#      个人GitHub地址:https://github.com/zhao302014
# ------------------------------------------------- #
import torch
from torch import nn
from net import MyResNet18
import numpy as np
from torch.optim import lr_scheduler
from torchvision import datasets, transforms

data_transform = transforms.Compose([
    transforms.Scale(224),    # 缩放图像大小为 224*224
    transforms.ToTensor()     # 仅对数据做转换为 tensor 格式操作
])

# 加载训练数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=data_transform, download=True)
# 给训练集创建一个数据集加载器
train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=8, shuffle=True)
# 加载测试数据集
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_transform, download=True)
# 给测试集创建一个数据集加载器
test_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=8, shuffle=True)

# 如果显卡可用,则用显卡进行训练
device = "cuda" if torch.cuda.is_available() else 'cpu'

# 调用 net 里定义的模型,如果 GPU 可用则将模型转到 GPU
model = MyResNet18().to(device)

# 定义损失函数(交叉熵损失)
loss_fn = nn.CrossEntropyLoss()
# 定义优化器(SGD:随机梯度下降)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9)
# 学习率每隔 10 个 epoch 变为原来的 0.1
lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)

# 定义训练函数
def train(dataloader, model, loss_fn, optimizer):
    loss, current, n = 0.0, 0.0, 0
    for batch, (X, y) in enumerate(dataloader):
        # 单通道转为三通道
        X = np.array(X)
        X = X.transpose((1, 0, 2, 3))             # array 转置
        image = np.concatenate((X, X, X), axis=0)
        image = image.transpose((1, 0, 2, 3))     # array 转置回来
        image = torch.tensor(image)               # 将 numpy 数据格式转为 tensor
        # 前向传播
        image, y = image.to(device), y.to(device)
        output = model(image)
        cur_loss = loss_fn(output, y)
        _, pred = torch.max(output, axis=1)
        cur_acc = torch.sum(y == pred) / output.shape[0]
        # 反向传播
        optimizer.zero_grad()
        cur_loss.backward()
        optimizer.step()
        loss += cur_loss.item()
        current += cur_acc.item()
        n = n + 1
    print('train_loss:' + str(loss / n))
    print('train_acc:' + str(current / n))

# 定义测试函数
def test(dataloader, model, loss_fn):
    # 将模型转换为验证模式
    model.eval()
    loss, current, n = 0.0, 0.0, 0
    # 非训练,推理期用到(测试时模型参数不用更新,所以 no_grad)
    with torch.no_grad():
        for batch, (X, y) in enumerate(dataloader):
            # 单通道转为三通道
            X = np.array(X)
            X = X.transpose((1, 0, 2, 3))  # array 转置
            image = np.concatenate((X, X, X), axis=0)
            image = image.transpose((1, 0, 2, 3))  # array 转置回来
            image = torch.tensor(image)  # 将 numpy 数据格式转为 tensor
            image, y = image.to(device), y.to(device)
            output = model(image)
            cur_loss = loss_fn(output, y)
            _, pred = torch.max(output, axis=1)
            cur_acc = torch.sum(y == pred) / output.shape[0]
            loss += cur_loss.item()
            current += cur_acc.item()
            n = n + 1
        print('test_loss:' + str(loss / n))
        print('test_acc:' + str(current / n))

# 开始训练
epoch = 100
for t in range(epoch):
    lr_scheduler.step()
    print(f"Epoch {t + 1}\n----------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    test(test_dataloader, model, loss_fn)
    torch.save(model.state_dict(), "save_model/{}model.pth".format(t))    # 模型保存
print("Done!")

test.py

代码语言:javascript
复制
#!/usr/bin/python
# -*- coding:utf-8 -*-
# ------------------------------------------------- #
#      作者:赵泽荣
#      时间:2021年9月10日(农历八月初四)
#      个人站点:1.https://zhao302014.github.io/
#              2.https://blog.csdn.net/IT_charge/
#      个人GitHub地址:https://github.com/zhao302014
# ------------------------------------------------- #
import torch
from net import MyResNet18
import numpy as np
from torch.autograd import Variable
from torchvision import datasets, transforms
from torchvision.transforms import ToPILImage

data_transform = transforms.Compose([
    transforms.Scale(224),     # 缩放图像大小为 224*224
    transforms.ToTensor()      # 仅对数据做转换为 tensor 格式操作
])

# 加载训练数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=data_transform, download=True)
# 给训练集创建一个数据集加载器
train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=8, shuffle=True)
# 加载测试数据集
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_transform, download=True)
# 给测试集创建一个数据集加载器
test_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=8, shuffle=True)

# 如果显卡可用,则用显卡进行训练
device = "cuda" if torch.cuda.is_available() else 'cpu'

# 调用 net 里定义的模型,如果 GPU 可用则将模型转到 GPU
model = MyResNet18().to(device)
# 加载 train.py 里训练好的模型
model.load_state_dict(torch.load("./save_model/99model.pth"))

# 获取预测结果
classes = [
    "0",
    "1",
    "2",
    "3",
    "4",
    "5",
    "6",
    "7",
    "8",
    "9",
]

# 把 tensor 转成 Image,方便可视化
show = ToPILImage()
# 进入验证阶段
model.eval()
# 对 test_dataset 里 10000 张手写数字图片进行推理
for i in range(len(test_dataset)):
    x, y = test_dataset[i][0], test_dataset[i][1]
    # tensor格式数据可视化
    show(x).show()
    # 扩展张量维度为 4 维
    x = Variable(torch.unsqueeze(x, dim=0).float(), requires_grad=False).to(device)
    # 单通道转为三通道
    x = x.cpu()
    x = np.array(x)
    x = x.transpose((1, 0, 2, 3))          # array 转置
    x = np.concatenate((x, x, x), axis=0)
    x = x.transpose((1, 0, 2, 3))      # array 转置回来
    x = torch.tensor(x).to(device)   # 将 numpy 数据格式转为 tensor,并转回 cuda 格式
    with torch.no_grad():
        pred = model(x)
        # 得到预测类别中最高的那一类,再把最高的这一类对应classes中的哪一个标签
        predicted, actual = classes[torch.argmax(pred[0])], classes[y]
        # 最终输出预测值与真实值
        print(f'Predicted: "{predicted}", Actual: "{actual}"')
© 2021 GitHub, Inc.
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-09-10 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 项目 GitHub 地址
  • 项目心得
  • 项目代码
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档