前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >PHP实现二叉树的深度优先遍历(前序、中序、后序)和广度优先遍历(层次)…

PHP实现二叉树的深度优先遍历(前序、中序、后序)和广度优先遍历(层次)…

作者头像
全栈程序员站长
发布2022-02-12 09:41:18
2950
发布2022-02-12 09:41:18
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是全栈君。

前言:

深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:

前序遍历:根节点->左子树->右子树

中序遍历:左子树->根节点->右子树

后序遍历:左子树->右子树->根节点

广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。

例如对于一下这棵树:

深度优先遍历:

前序遍历:10 8 7 9 12 11 13

中序遍历:7 8 9 10 11 12 13

后序遍历:7 9 8 11 13 12 10

广度优先遍历:

层次遍历:10 8 12 7 9 11 13

二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。

深度优先遍历:

1、前序遍历:

代码语言:javascript
复制
/**
     * 前序遍历(递归方法)
     */
    private function pre_order1($root)
{
        if (!is_null($root)) {
            //这里用到常量__FUNCTION__,获取当前函数名,好处是假如修改函数名的时候,里面的实现不用修改
            $function = __FUNCTION__;
            echo $root->key . " ";
            $this->$function($root->left);
            $this->$function($root->right);
        }
    }




    /**
     * 前序遍历(非递归方法)
     * 因为当遍历过根节点之后还要回来,所以必须将其存起来。考虑到后进先出的特点,选用栈存储。
     */
    private function pre_order2($root)
{




        //        $stack = new splstack();
        //        $stack->push($root);
        //        while(!$stack->isEmpty()){
        //            $node = $stack->pop();
        //            echo $node->key.' ';
        //            if(!is_null($node->right)){
        //                $stack->push($node->right);
        //            }
        //            if(!is_null($node->left)){
        //                $stack->push($node->left);
        //            }
        //        }








        if (is_null($root)) {
            return;
        }
        $stack = new splstack();
        $node = $root;
        while (!is_null($node) || !$stack->isEmpty()) {
            while (!is_null($node)) {
                //只要结点不为空就应该入栈保存,与其左右结点无关
                $stack->push($node);
                echo $node->key . ' ';
                $node = $node->left;
            }
            $node = $stack->pop();
            $node = $node->right;
        }
    }








    //前序遍历
    public function PreOrder()
{
        // 所在对象中的tree属性保存了一个树的引用
        //     $this->pre_order1($this->tree->root);
        $this->pre_order2($this->tree->root);
    }

说明:1、我将所有的遍历方法都封装在一个类 traverse 里面了。2、pre_order2方法中,在使用栈的过程中,我使用的是PHP标准库SPL提供的splstack,如果你们习惯使用数组的话,可以使用 array_push() 和array_pop() 模拟实现。

2、中序遍历:

代码语言:javascript
复制
/**
     * 中序遍历(递归方法)
     */
    private function mid_order1($root)
{
        if (!is_null($root)) {
            $function = __FUNCTION__;
            $this->$function($root->left);
            echo $root->key . " ";
            $this->$function($root->right);
        }
    }




    /**
     * 中序遍历(非递归方法)
     * 因为当遍历过根节点之后还要回来,所以必须将其存起来。考虑到后进先出的特点,选用栈存储。
     */
    private function mid_order2($root)
{
        if (is_null($root)) {
            return;
        }




        $stack = new splstack();
        $node = $root;
        while (!is_null($node) || !$stack->isEmpty()) {
            while (!is_null($node)) {
                $stack->push($node);
                $node = $node->left;
            }
            $node = $stack->pop();
            echo $node->key . ' ';
            $node = $node->right;
        }
    }




    //中序遍历
    public function MidOrder()
{
        //        $this->mid_order1($this->tree->root);
        $this->mid_order2($this->tree->root);
    }

3、后序遍历:

代码语言:javascript
复制
/**
     * 后序遍历(递归方法)
     */
    private function post_order1($root)
{
        if (!is_null($root)) {
            $function = __FUNCTION__;
            $this->$function($root->left);
            $this->$function($root->right);
            echo $root->key . " ";
        }
    }




    /**
     * 后序遍历(非递归方法)
     * 因为当遍历过根节点之后还要回来,所以必须将其存起来。考虑到后进先出的特点,选用栈存储。
     * 由于在访问了左子节点后怎么跳到右子节点是难点,这里使用一个标识lastVisited来标识上一次访问的结点
     */
    private function post_order2($root)
{
        if (is_null($root)) {
            return;
        }




        $node = $root;
        $stack = new splstack();
        //保存上一次访问的结点引用
        $lastVisited = NULL;
        $stack->push($node);
        while(!$stack->isEmpty()){
            $node = $stack->top();//获取栈顶元素但不弹出
            if(($node->left == NULL && $node->right == NULL) || ($node->right == NULL && $lastVisited == $node->left) || ($lastVisited == $node->right)){
                echo $node->key.' ';
                $lastVisited = $node;
                $stack->pop();
            }else{
                if($node->right){
                    $stack->push($node->right);
                }
                if($node->left){
                    $stack->push($node->left);
                }
            }
        }
    }




    //后序遍历
    public function PostOrder()
{
        //        $this->post_order1($this->tree->root);
        $this->post_order2($this->tree->root);
    }

广度优先遍历:

1、层次遍历:

代码语言:javascript
复制
  /**
     * 层次遍历(递归方法)
     * 由于是按层逐层遍历,因此传递树的层数
     */
    private function level_order1($root,$level){
        if($root == NULL || $level < 1){
            return;
        }
        if($level == 1){
            echo $root->key.' ';
            return;
        }
        if(!is_null($root->left)){
            $this->level_order1($root->left,$level - 1);
        }
        if(!is_null($root->right)){
            $this->level_order1($root->right,$level - 1);
        }
    }




    /**
     * 层次遍历(非递归方法)
     * 每一层从左向右输出
元素需要储存有先进先出的特性,所以选用队列存储。
     */
    private function level_order2($root){
        if(is_null($root)){
            return;
        }




        $node = $root;
        //利用队列实现
//        $queue = array();
//        array_push($queue,$node);
//
//        while(!is_null($node = array_shift($queue))){
//            echo $node->key.' ';
//            if(!is_null($node->left)){
//                array_push($queue,$node->left);
//            }
//            if(!is_null($node->right)){
//                array_push($queue,$node->right);
//            }
//        }




        $queue = new splqueue();
        $queue->enqueue($node);
        while(!$queue->isEmpty()){
            $node = $queue->dequeue();
            echo $node->key.' ';
            if (!is_null($node->left)) {
                $queue->enqueue($node->left);
            }
            if (!is_null($node->right)) {
                $queue->enqueue($node->right);
            }
        }
    }




    //层次遍历
    public function LevelOrder(){
//        $level = $this->getdepth($this->tree->root);
//        for($i = 1;$i <= $level;$i ++){
//            $this->level_order1($this->tree->root,$i);
//        }




        $this->level_order2($this->tree->root);
    }




    //获取树的层数
    private function getdepth($root){
        if(is_null($root)){
            return 0;
        }
        $left = getdepth($root -> left);
        $right = getdepth($root -> right);
        $depth = ($left > $right ? $left : $right) + 1;
        return $depth;
    }

说明:level_order2方法中,在使用队列的过程中,我使用的是PHP标准库SPL提供的splqueue,如果你们习惯使用数组的话,可以使用 array_push() 和array_shift() 模拟实现。

使用:

现在我们来看看客户端代码:

代码语言:javascript
复制
class Client
{
    public static function Main()
{
        try {
            //实现文件的自动加载
            function autoload($class)
{
                include strtolower($class) . '.php';
            }




            spl_autoload_register('autoload');




            $arr = array(10, 8, 12, 7, 9, 11, 13);
            $tree = new Bst();
//            $tree = new Avl();
//            $tree = new Rbt();




            $tree->init($arr);




            $traverse = new traverse($tree);
            $traverse->PreOrder();
//            $traverse->MidOrder();
//            $traverse->PostOrder();
//            $traverse->LevelOrder();
        } catch (Exception $e) {
            echo $e->getMessage();
        }
    }
}




CLient::Main();
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/111998.html原文链接:https://javaforall.cn
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档