前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >什么是事件知识图谱?中科院计算所发布《事件知识图谱综述》综述论文

什么是事件知识图谱?中科院计算所发布《事件知识图谱综述》综述论文

作者头像
新智元
发布2022-02-24 14:41:19
1.9K0
发布2022-02-24 14:41:19
举报
文章被收录于专栏:新智元新智元


新智元报道

来源:专知

【新智元导读】事件知识图谱是当下关注的焦点。但究竟什么是事件知识图谱?中科院计算所发布《事件知识图谱综述》综述论文,本文从历史、本体、实例和应用视图等方面对EKG进行了全面的综述。

除了以实体为中心的知识(通常以知识图谱(knowledge Graph, KG)的形式组织起来),事件也是世界上必不可少的一种知识,它引发了以事件为中心的知识表示形式(Event KG, EKG)的兴起。它在许多机器学习和人工智能应用中发挥着越来越重要的作用,如智能搜索、问题回答、推荐和文本生成。

本文从历史、本体、实例和应用视图等方面对EKG进行了全面的综述。为了更全面地描述EKG,我们将重点关注它的历史、定义、模式归纳、获取、相关的代表性图形/系统和应用程序。研究了其发展过程和趋势。我们进一步总结了未来EKG研究的发展方向。

https://arxiv.org/abs/2112.15280

知识图谱(KG)是谷歌在2012年发布的一种流行的知识表示形式。它关注名义实体及其关系,因此代表静态知识。然而,世界上存在着大量的事件信息,传递着动态的程序性知识。因此,以事件为中心的知识表示形式(如Event KG (EKG))也很重要,它将实体和事件结合在一起。它促进了许多下游应用,如智能搜索、问答、推荐和文本生成[1]、[2]、[3]、[4]、[5]。

本文就EKG的概念及其发展进行了深入的探讨。关于EKG你想知道什么?你可能会对它的产生感兴趣,也就是所谓的EKG,如何构建它,以及它的进一步应用。为了全面介绍EKG,我们从历史、本体论、实例和应用视图等方面对其进行了介绍。从历史的观点,我们介绍了EKG的简史和我们导出的EKG的定义。

从本体的角度,提出了与EKG相关的基本概念,以及EKG相关的任务和方法,包括事件模式归纳、脚本归纳和EKG模式归纳。

从实例视图,我们详细阐述了事件获取和与EKG相关的代表图/系统。具体来说,事件获取的重点是如何构建一个基本的EKG,并获得一个更好的EKG。前者包括事件抽取和事件关系抽取,是最基本的任务。后者包括事件相互引用解析和事件参数补全。

从应用的角度,介绍了一些基本的应用,包括脚本事件预测和时间KG预测,以及一些深层次的应用,如搜索、问答、推荐和文本生成。并对相关任务的发展过程和趋势进行了深入的研究和分析。然后指出未来的方向。

事件知识图谱发展历程

EKG 相关概念

什么是EKG?历史视角

在本节中,我们将从历史的视角,简要介绍EKG的历史。然后我们根据历史上与EKG相关的概念推导出EKG的定义。

什么是EKG?本体视角

从本体的角度来看,我们研究了模式和相关的任务。EKG的模式描述了构成它的基本概念,比如事件类型、事件参数的角色以及事件之间的关系。事件类型和事件参数的角色构成了事件的框架,即事件模式。对于事件之间的关系,典型的脚本[30]根据一些事件关系组织一组事件,这些事件关系共同描述了常见的场景。

什么是EKG?实例视角

从实例视图来看,本节介绍如何构建EKG,即事件采集和EKG相关的代表图/系统。

事件抽取

事件关系抽取

未来方向与挑战

关于EKG的研究和成果有很多。然而,仍有几个方向需要关注和进一步研究。在本节中,我们将深入探讨这些未来的方向。

高性能的事件获取

最近的事件获取研究在有效性和效率上远远不能满足应用需求。特别是事件提取和事件关系提取的精度较低。从而阻碍了高质量基础EKG的构建。此外,现有的模型通常不重视复杂性问题。然而,高参数复杂度和高时间复杂度的模型不利于从大量数据中快速构建EKG。因此,高效率的事件获取是未来的一个重要方向。

多模态知识处理

在现实世界中,事件可能以文本、图像、音频和视频的形式呈现。然而,现有的关于EKG的研究多集中在文本处理上,而忽略了图像、音频、视频中的大量信息。对于多模态事件表示学习[214]和事件抽取[215]的研究很少。实际上,不同模态的事件可以消除歧义,相互补充。因此,多模态信息的联合利用是未来的一个重要方向。具体来说,来自所有模态的事件应在一个统一的框架中表示,事件获取研究应注意多模态提取,EKG图推理也应考虑多模态信息。

可解释EKG研究

在EKG研究中,研究主要集中在用深度学习方法拟合训练数据。然而,它们通常缺乏可解释性,也就是说,对于它们为什么和如何工作没有明确的想法。实际上,了解最终结果的原因有助于在实际应用中采用它们。它是友好和令人信服的解释为什么最终结果是给定的。未来可解释性EKG的研究将是一个重要的方向。

实用EKG研究

在与EKG相关的任务中,有些任务的形式化过于理想化,与现实场景相距甚远。例如,在一个现有的事件中,只完成一个缺失的参数或参数角色,通过从几个候选对象中选择它来预测未来的脚本事件,并且只预测未来事件的一个元素。在更实际的形式下进行研究更具挑战性,但也更有趣,对应用具有重要意义。

EKG对于许多都很重要,包括智能搜索、问题回答、推荐和文本生成。本文从不同角度对EKG的研究进行了综述。特别地,我们深入研究了EKG的历史、本体、实例和应用视图。它的历史,定义,模式归纳,获取,相关的代表图/系统,和应用进行了深入的研究。根据其发展趋势,进一步总结了未来EKG研究的展望方向。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2022-01-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 【新智元导读】事件知识图谱是当下关注的焦点。但究竟什么是事件知识图谱?中科院计算所发布《事件知识图谱综述》综述论文,本文从历史、本体、实例和应用视图等方面对EKG进行了全面的综述。
相关产品与服务
灰盒安全测试
腾讯知识图谱(Tencent Knowledge Graph,TKG)是一个集成图数据库、图计算引擎和图可视化分析的一站式平台。支持抽取和融合异构数据,支持千亿级节点关系的存储和计算,支持规则匹配、机器学习、图嵌入等图数据挖掘算法,拥有丰富的图数据渲染和展现的可视化方案。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档