前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >八位“Booth二位乘算法”乘法器

八位“Booth二位乘算法”乘法器

作者头像
huofo
发布2022-03-17 08:25:47
8630
发布2022-03-17 08:25:47
举报
文章被收录于专栏:huofo's blog

目录

八位“Booth二位乘算法”乘法器

原理

补码乘法器

之前介绍了几篇无符号乘法器或加法器的写法,当然,稍作修改也就可以改成符合有符号数的乘法器或加法器。

但是呢,我们之前写的乘法器或加法器,其实都是默认是正数来写的,而且是以正数的原码来写的,所以上面说稍作修改也就可以成为有符号数的乘法器或加法器,其实就是对我们以为的原码进行取补码,再进行乘法或加法的运算。

随着计算机硬件部件的升级,处理器技术的发展,现代处理器中的定点数(小数点位置固定)都是按照补码形式来存储的。

所以在之前写的无符号加法器中,只要利用:

\[X_补+Y_补=[X+Y]_补 \]

就可以轻易将原先的加法器改写成有符号加法器——只要对结果再取一次补码即可。

但是乘法器呢?稍作学习可以知道,补码的乘法是这样的:

\[X*Y_补=[X*Y]_补 \]

我们再考虑一下之前所说的:在现代处理器中的定点数都是按照补码形式来存储的

所以我们要想得到两个数的乘法结果,首先应该知道被乘数的原码和补码,再对最终结果取补码,即可得到我们期望的乘法结果。

那么如何求“X*Y补”呢?在处理器中,一个二进制数Y补形如y7y6y5y4y3y2y1y0,也就是表示一个数的补码,那么它的原码是多少呢?

补码的计算方法,除了“首位不变,余位取反再加一”的方式,还有一种就是“用溢出条件来减这个数”,在我们之前第一节课说二进制的时候,以钟表为例——“十二进制”,得到结论——“4-8的补码”。

我们用第二种取补码的方式:-8的补码=12-8=4(这里没有考虑符号问题,只是求了补码的值)

所以考虑一下符号的话,-8的补码=8-12=-4

同理:

十进制下,-4的补码=4-10=-6

二进制下,-101补码=1101补码=101-1000=-011=1011

这样解决求补码的方式在接下来的计算方面就更方便了,至于正数嘛,不变就好了。

回到上面的问题,一个二进制数Y补形如y7y6y5y4y3y2y1y0它的原码是多少呢?根据:

\[[X_补]_补=X \]

Y补的原码Y应该为:

\[Y=(y_7*2^7+y_6*2^6+y_5*2^5+……+y_0*2^0)-1*2^8 \]

稍微化简一下:

\[Y=-y_7*2^7+(y_6*2^6+y_5*2^5+……+y_0*2^0) \]

所以我们如果想求X*Y,可以先求其补码:

\[[X*Y]_补=[X*(-y_7*2^7)+X*(y_6*2^6+y_5*2^5+……+y_0*2^0)]_补 \]

根据补码加法“X补+Y补=[X+Y]补”再稍微化简一下:

\[[X*Y]_补=-y_7*[X*2^7]_补+y_6*[X*2^6]_补+y_5*[X*2^5]_补+……+y_0*[X*2^0]_补 \]

再引入一个定理:

\[[X*2^n]_补=X_补*2^n \]

所以上式又可以换一种写法:

\[[X*Y]_补=X_补*(-y_7*2^7+(y_6*2^6+y_5*2^5+……+y_0*2^0))=Y*X_补 \]

哦这不就是上面介绍过的补码乘法嘛:

\[[X*Y]_补=Y*X_补=X*Y_补 \]

如果令一个数Y1补=y6y6y5y4y3y2y1y0,去掉了首位,那么上式是不是可以理解为:

\[[X*Y]_补=X_补*Y1_补-y_7*X_补*2^7 \]

其中的Y1补不就刚好是Y补的后7位嘛?也就是说一个乘法可以分为两部分理解:首位的乘法和其他位的乘法。首位的乘法产生的部分积符号是减,其他位的部分积符号为加

经过上面的推导大家应该会对补码乘法的原理有了一定的概念,我们来把它写成竖式的形式,以(-6)x(-7)为例,原码乘应该是1110x1111,在计算机中是以补码的形式存储,所以补码乘是1010x1001,代入公式,令X补=1010Y补=1001,其运算过程如下:

这里可能有一些迷惑的是:为什么第一步运算得到的结果是11111010?为什么要在前面填充1111

这也就是所谓的符号填充,我们之前的设计中都没有涉及到符号位,所以默认都是填充0,现在遇到了负数问题,也就需要填充符号了,但是这样看起来是不是一点都觉得很奇怪?如果没办法理解的话,我建议你可以尝试对它求补码,看看是不是可以保持首位符号位不变,余位取反加一。惊叹于设计师的机智。

补码乘法器的原理讲明白了,具体电路实现的话,大家可以尝试一下,本节重点不在于此。

Booth一位乘

在上面已经讨论了补码乘法器的原理,那么什么是Booth乘法器呢?Booth乘法器是由英国的Booth夫妇提出的,并没有什么特殊含义,所以我们直接快进到内容。

经过补码乘法器的推导:

\[[X*Y]_补=X_补*(-y_7*2^7+(y_6*2^6+y_5*2^5+……+y_0*2^0)) \]

参考中学数学:

\[2^n=2*2^{n-1} \]

其核心计算思想是括号里的形式,也就是Y补的原码Y所以我们对括号里的内容再进行分解合并,也就是对Y分解合并。先分解:

\[Y=-y_7*2^7+((2-1)y_6*2^6+(2-1)y_5*2^5+……+(2-1)y_0*2^0) \]

这样应该挺直观了吧:

\[Y=-y_7*2^7+(y_6*2^7-y_6*2^6)+(y_5*2^6-y_5*2^5)+……+(y_0*2^1-y_0*2^0) \]

再合并:

\[Y=(y_6-y_7)*2^7+(y_5-y_6)*2^6+(y_4-y_5)*2^5+……+(0-y_0)*2^0 \]

最后有个0-y0的项,看起来有点不合群,所以令:

\[y_{-1}=0 \]

代入上式,即:

\[Y=(y_6-y_7)*2^7+(y_5-y_6)*2^6+(y_4-y_5)*2^5+……+(y_{-1}-y_0)*2^0 \]

这也就是Booth一位乘算法的原理。其优点就在于不用再像补码乘法器那样,不需要专门对最后一次部分积采用补码减法

根据上式,还可以列出Booth一位乘的规则:

y(i-1)

y(i)

y(i-1) - y(i)

操作

0

0

0

加0

0

1

-1

减X补

1

0

1

加X补

1

1

0

加0

再举个例子来计算,仍以(-6)x(-7)为例,补码乘是1010x1001,列出竖式:

可是这里为什么还是有减法呢?和常规的补码乘法器相比,简直是老和尚抹洗头膏,大可不必。甚至由于每次判断两位数字,增大了电路的复杂度,那么为什么booth乘法器如此好用呢?

其实booth一位乘算法并不常用,但是booth二位乘就不一样了,通过增加一定的空间复杂度,将运算周期减为一半!

Booth二位乘

还是根据补码乘法器,我们将Y的表达式再进行变换——先分解:

\[Y=-2*y_7*2^6+y_6*2^6+(y_5*2^6-2*y_5*2^4)+……+y_0*2^0+y_{-1}*2^0 \]

再整合:

\[Y=(y_5+y_6-2*y_7)*2^6+(y_3+y_4-2*y_5)*2^4)+……+(y_{-1}+y_0-2*y_1)*2^0 \]

好了Booth二位乘算法也完事了,类比于Booth一位乘,我们也可以列出Booth二位乘的规则:

y(i-1)

y(i)

y(i+1)

y(i-1) + y(i) - 2*y(i+1)

操作

0

0

0

0

加0

0

1

0

1

加X补

1

0

0

1

加X补

1

1

0

2

加2*X补,即X补<<1

0

0

1

-2

减2*X补,即X补<<1

0

1

1

-1

减X补

1

0

1

-1

减X补

1

1

1

0

加0

再举个例子来计算,仍以(-6)x(-7)为例,补码乘是1010x1001,列出竖式:

运算周期减半了!

好了,那Booth乘法器有没有三位乘呢?可以有,但是三位的时候就会出现加3*X补2*X补可以通过左移一位得到,而3*X补就有点麻烦了,所以不再介绍,至于四位乘、八位乘,想挑战的同学可以挑战一下。

设计思路

减法变加法

首先我们来解决一个问题,如何把减法消除?我们知道,减去一个数,等于加上这个数的相反数;减去一个数,也等于加上这个数的补码。这个过程中的减数也默认是正数,因为正数的补码还是正数,只有正数前面加一个符号再去补码才有用。那么如上面竖式所写,减去一个负补码,就应该等于加上“这个负补码的补码的相反数”,比如上面的补码乘法器竖式,就应该变换成如下形式:

再说明一下吧:11010,就相当于加11010的补码的相反数,即加10110的相反数,即00110

所以booth一位乘算法的示例应该变成这样:

booth二位乘算法的示例应该变成这样:

vivado特性

考虑到上述减法变加法的操作后,容易总结出:减法变加法,其实就是对补码的符号位取反,也就是对减数每一位取反后再加一。

再回读一边上述的理论部分,可能你会发现,在乘法运算中,只用到了补码“负补码”两种概念的数字。而在vivado中(相当于在处理器中),数字默认是以补码形式存储的,即输入的乘数默认就是补码形式,这样只需要再求出“负补码”即可。设X[3:0]表示一个乘数,默认是以补码形式存储,则其“负补码”:

\[X_{负补码}=!X + 1 \]

至于其原码:

\[X_{原码}=(X[3],!X[2:0]) + 1 \]

其实根本用不着。

有了以上知识储备,我们就可以写代码啦~

设计文件

代码语言:javascript
复制
//由于实力不够,没能设计成改一个数字变一个规模的程序
`define size 8
module mul_booth_signed(
    input wire [`size - 1 : 0] mul1,mul2,
    input clk,
    input wire [2:0] clk_cnt,//运算节拍,相当于状态机了,8位的话每次运算有4个拍
    output wire [2*`size - 1 : 0] res
    );

    //由于传值默认就是补码,所以只需要再计算“负补码”即可
    wire [`size - 1 : 0] bmul1,bmul2;
    assign bmul1 = (~mul1 + 1'b1) ;
    assign bmul2 = (~mul2 + 1'b1) ;//其实乘数2的负补码也没用到。
	//其实可以把状态机的开始和结束状态都写出来,我懒得写了,同学们可以尝试一下啊~
    parameter   zeroone       =   3'b00,
                twothree      =   3'b001,
                fourfive      =   3'b010,
                sixseven      =   3'b011;
    //y(i-1),y(i),y(i+1)三个数的判断寄存器,由于有多种情况,也可以看成状态机(也可以改写成状态机形式,大家自己试试吧)
    reg [2:0] temp;

    //部分积
    reg [2*`size-1 : 0] A;
	//每个节拍下把相应位置的数据传给temp寄存器
    always @ (posedge clk) begin
        case(clk_cnt)
            zeroone  : temp <= {mul2[1:0],1'b0};
            twothree : temp <= mul2[3:1];
            fourfive : temp <= mul2[5:3];
            sixseven : temp <= mul2[7:5];
            default : temp <= 0;
        endcase
    end
	
    always @(posedge clk) begin
        if (clk_cnt == 3'b100) begin//如果节拍到4就让部分积归0,此时已经完成一次计算了
            A <= 0;
        end else case (temp)
            3'b000,3'b111 :   begin//这些是从高位到低位的判断,别看反了噢
                A <= A + 0;
            end
            3'b001,3'b010 : begin//加法操作使用补码即可,倍数利用左移解决
                A <= A + ({{8{mul1[`size-1]}},mul1} << 2*(clk_cnt-1));
            end
            3'b011 : begin
                A <= A + ({{8{mul1[`size-1]}},mul1} << 2*(clk_cnt-1) + 1);
            end
            3'b100: begin//减法操作利用“负补码”改成加法操作,倍数利用左移解决
                A <= A + ({{8{bmul1[`size-1]}},bmul1} << 2*(clk_cnt-1) + 1);
            end
            3'b101,3'b110 : begin
                A <= A + ({{8{bmul1[`size-1]}},bmul1} << 2*(clk_cnt-1));
            end
            default: A <= 0;
        endcase
    end
	//当节拍到4的时候写入结果寄存器。
    assign res = (clk_cnt == 3'b100) ? A : 0;
endmodule

这是一个八位Booth二位乘算法的乘法器,至于Booth一位和Booth四位的乘法器,大家各自尝试就好。

此外在这个文件当中,我用到了clk_cnt这个寄存器,大家是不是以为我会多用一个模块用来产生clk_cnt的波形?

身为一个懒人,我直接在测试文件里写了吼吼吼~

综合电路

37个元件,36个IO口,318根线

测试文件

代码语言:javascript
复制
`timescale 1ns / 1ps
module mul_tb(
    );
    reg [7:0] mul1,mul2;
    wire [15:0] res;
    reg clk;
    wire clk_en;
    reg [2:0] clk_cnt;

    initial begin
        mul1 <= -8'd7;
        mul2 <= -8'd3;
        clk <= 0;
        clk_cnt <= 3'b0;
    end

    always # 10 clk = ~clk;
	//clk_cnt发生器,懒人版
    always @(posedge clk) begin
        clk_cnt <= clk_cnt + 1'b1;
        if (clk_cnt == 3'b100)
            clk_cnt <= 3'b00;
    end
	//每次运算结束后,让乘数变化,以便产生不同的数据用以观察
    assign clk_en = (clk_cnt == 3'b100) ? 1'b1 : 1'b0;
    always @ (posedge clk_en) begin
        mul2 <= mul2 + 1'b1;
    end

    mul_booth_signed try(.mul1(mul1),.mul2(mul2),.res(res),.clk(clk),.clk_cnt(clk_cnt));
endmodule

仿真波形

将其改成有符号十进制数形式显示,可以验证电路设计正确。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-11-13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 八位“Booth二位乘算法”乘法器
    • 原理
      • 补码乘法器
      • Booth一位乘
      • Booth二位乘
    • 设计思路
      • 减法变加法
      • vivado特性
    • 设计文件
      • 综合电路
    • 测试文件
      • 仿真波形
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档