前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >解读Google分布式锁服务

解读Google分布式锁服务

作者头像
黄规速
发布2022-04-14 21:25:34
4630
发布2022-04-14 21:25:34
举报

背景介绍

在2010年4月,Google的网页索引更新实现了实时更新,在今年的OSDI大会上,Google首次公布了有关这一技术的论文。

在此之前,Google的索引更新,采用的的批处理的方式(map/reduce),也就是当增量数据达到一定规模之后,把增量数据和全量索引库Join,得到最新的索引数据。采用新的索引更新系统之后,数据的生命周期缩短了50%,所谓的数据生命周期是指,数据从网页上爬下来,到展现在搜索结果中这段时间间隔,但是正如Google所强调的,这一系统仅仅是为增量更新所建立的,并没有取代map/reduce的批量作业处理模式。

架构Overview

Google的新一代增量索引更新 – Percolator,是建立在Bigtable之上,提供的API也尽量接近Bigtable的方式,所以整个架构大致是如下的样子:

事务(Transaction)和锁(Lock)有区别吗?

在关系数据库领域,二者还是有很大区别的,但是对Percolator而言,Transaction = Lock,所以我们这里讨论的分布式锁,也可以说是分布式事务,所以下面提到的锁或者事务,指的都是同一件事。

Percolator利用Bigtable原有的行锁,再加上自己的一些巧妙的做法,实现了分布式锁服务,这就意味着,Google可以实时的更新PB级别的索引库。最近我们发现Google的搜索结果时效性很好,刚写好的文章,几分钟之后,Google就可以检索到,原因就在Google的Crawler在抓到新的网页之后,不用再等待一定的时间批量更新索引,而是实时的更新,数据生命周期大大缩短。

Percolator支持跨行,跨表的事务,充分利用了Bigtable本身已经有的行事务、备份机制。

简单的示例

在分析Percolator的细节之前,先看一个简单的例子,对Percolator有一个大概的认识,有利于后面的理解。

下面的这个例子是把UserA的人气分减掉10,加到UserB的人气分上,key表示每一行的key,data,lock,write是列名字,data存储数据,lock存储锁状态,write表示事务提交后的数据位置引用.

初始状态:UserA有100个人气分,UserB有50个人气分

最终状态:UserA有90个人气分,UserB有60个人气分

Step0(初始状态)

Key

Data

Lock

Write

UserA

100:t1

UserB

50:t2

Step1(从UserA中拿出10个人气分)

Key

Data

Lock

Write

UserA

90:t2100:t1

Primary Lock:t2

t2

UserB

50:t2

Step2(把UserB的人气分加10)

Key

Data

Lock

Write

UserA

90:t2100:t1

primary_lock:t2

t2

UserB

60:t350:t2

Primary_lock:UserA@data

t3

Step3(事务提交)

A:先提交primary(移除锁,写入新的timestamp,在write列写入新数据的位置引用)

Key

Data

Lock

Write

UserA

t390:t2 100:t1

t3:data:t2t2

UserB

60:t350:t2

Primary_lock@UserA.data

t3

B:再提交非primary(步骤同上)

Key

Data

Lock

Write

UserA

t390:t2 100:t1

t3:data:t2t2

UserB

t460:t3 50:t2

t4:data:t3t3

事务结束了,UserA有90个人气分,timestamp是t3,Userb有60个人气分,timestamp是t4。(至于锁的写法和write列为什么那样写,后面再详细解释)

事务的执行过程

Percolator锁分为两种,primary和non-primary,在事务提交的过程中,先提交primary锁,无论是跨行还是跨表,primary锁都是没有区别的。

事务的提交

事务的提交的过程分两步,以UserA为例:

首先,在write列写入新数据的位置引用,注意不是数据,是引用(理解成指针会更形象),上面step3A 中t3:data:t2表示在t3时刻提交的数据,最新的数据在data列的t2 timestamp

然后,移除lock列的内容。

因为Bigtable支持行锁定,所以上述两步都是在一个Bigtable事务内完成的。

读操作

当一个client在发起读操作之后,首先会向oracle server申请time stamp,接下来Percolator会检查lock列,如果lock列不空,那么读操作试图移除(修复)这个lock或者等待,在后续锁冲突处理详细介绍如何修复。

补充:oracle发放time stamp是严格递增的,而且不是一次发放一个,而是采取批量的方式。

写操作

当一个client发起写操作之后,首先会向oracle server申请time stamp,Percolator会检查write列,如果write列的timestamp大于当前client的timestamp,那么写失败(不能覆盖新的数据 write-write conflict);如果lock列有锁存在,说明当前行正在被另外的client锁定,client要么写失败,要么试图修复(lock conflict)!

Notify机制

Percolator定义了一系列的Observer(类似于数据库的trigger),位于Bigtable的tablet server上,Observer会监视某一列或者某几列,当数据发生变化就会触发Observer,Observer执行完之后,又会创建或者通知后续的Observer,从而形成一个通知的传递。

锁冲突的处理

当一个client在事务提交阶段,crash掉了,那么锁还保留,这样后续的client访问就会被阻止,这种情况叫做锁冲突,Percolator提供了一种简单的机制来解决这个问题。

每个client定期向Chubby Server写入token,表明自己还活着,当某个client发现锁冲突,那么会检查持有锁的client是否还活着,如果client是working状态,那么client等待锁释放。否则client要清除掉当前锁。

Roll forward & roll back:

Client先检查primary lock是否存在,因为事务提交先从primary开始,如果primary不存在,那么说明前面的client已经提交了数据,所以client执行roll forward操作:把non-primary对应的数据提交,并且清除non-primary lock;如果primary存在,说明前面的client还没有提交数据就crash了,此时client执行roll back操作:把primary和non-primary的数据清除掉,并且清除lock。

小结

Google的分布式锁服务很好了支持了增量索引的实时更新,缩短了数据的生命周期。本文对notify机制介绍的比较简单。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2013-01-06 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 背景介绍
  • 架构Overview
  • 简单的示例
  • 事务的执行过程
  • 锁冲突的处理
  • 小结
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档