前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[SPARK][CORE] 面试问题之 BypassMergeSortShuffleWriter的细节

[SPARK][CORE] 面试问题之 BypassMergeSortShuffleWriter的细节

作者头像
Tim在路上
发布2022-05-23 08:51:04
2290
发布2022-05-23 08:51:04
举报

BypassMergeSortShuffleWriter 就如其名,旁支的sort-baesd Shuffle, 他是采用Hash-style实现的Sort based Shuffle。在map阶段records会按分区写入不同的文件, 一个分区一个文件。然后链接这些分区文件形成一个output文件,并生成其index。reducer通过IndexShuffleBlockResolver 查找消费输出文件的不同分区。

BypassMergeSortShuffleWriter 中records是不会缓存在内存中,所有的records最终都会被flush到磁盘。

在写入时,BypassMergeSortShuffleWriter 会同时为所有的分区打开单独的序列化器和文件流,所以当reduce分区数量特别大的时候性能会非常低下。

ShuffleWriter 的调用是在ShuffleMapTask的runTask中进行调用,每个mapTask 都会调用一次runTask。

BypassMergeSortShuffleWriter 源码解析

首先,我们来回顾下ShuffleWriter的过程。Shuffle发生与宽依赖的stage间,由于stage内的计算采用pipeline的方式。shuffle发生的上一个stage为map节点,下游的stage为reduce阶段。而shuffle写的过程就发生在map阶段,shuffleWriter的调用主要是在ShuffleMapStage中,每个ShuffleMapStage包含多个ShuffleMapTask, mapTask个数和分区数相关。

这样每个ShuffleMapTask都会在其runTask调用下Writer接口,其并非直接调用到具体的执行类。而是在划分宽依赖时想ShuffleManage注册shuffle时,返回的ShuffleHandler决定的。

在ShuffleMapTask调用Writer时,是先调用了ShuffleWriteProcessor ,主要控制了ShuffleWriter的生命周期。下面我们看下ShuffleWriteProcessor 中的Write的实现:

代码语言:javascript
复制
// ShuffleWriteProcessor
def write(
    rdd: RDD[_],
    dep: ShuffleDependency[_, _, _],
    mapId: Long,
    context: TaskContext,
    partition: Partition): MapStatus = {
  var writer: ShuffleWriter[Any, Any] = null
  try {
    // [1] 通过SparkEnv获取ShuffleManager, 并通过dep的shuffleHandle, 获取对应的shuffleWriter的具体实现。
    val manager = SparkEnv.get.shuffleManager
    writer = manager.getWriter[Any, Any](
      dep.shuffleHandle,
      mapId,
      context,
      createMetricsReporter(context))
    // [2] 调用shuffleWriter的write方法, 并将当前rdd的迭代器传入
    writer.write(
      rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
    // [3] shuffleWriter结束后,返回mapStatus,或清空数据
    val mapStatus = writer.stop(success = true)
    // [4] 如果shuffleWriter执行成功,初始化push-based shuffle, 后面再细讲
    if (mapStatus.isDefined) {
      // Initiate shuffle push process if push based shuffle is enabled
      // The map task only takes care of converting the shuffle data file into multiple
      // block push requests. It delegates pushing the blocks to a different thread-pool -
      // ShuffleBlockPusher.BLOCK_PUSHER_POOL.
      if (dep.shuffleMergeEnabled && dep.getMergerLocs.nonEmpty && !dep.shuffleMergeFinalized) {
        manager.shuffleBlockResolver match {
          case resolver: IndexShuffleBlockResolver =>
            val dataFile = resolver.getDataFile(dep.shuffleId, mapId)
            new ShuffleBlockPusher(SparkEnv.get.conf)
              .initiateBlockPush(dataFile, writer.getPartitionLengths(), dep, partition.index)
          case _ =>
        }
      }
    }
    mapStatus.get
  }
...
}

ShuffleWriteProcessor 中主要做了三件事:

  • [1] 通过SparkEnv获取ShuffleManager, 并通过dep的shuffleHandle, 获取对应的shuffleWriter的具体实现。
  • [2] 调用shuffleWriter的write方法, 并将当前rdd的迭代器传入
  • [3] shuffleWriter结束后,返回mapStatus,或清空数据

可见每一个ShuffleMapTask执行结束后,就会返回一个mapStatus。Task 结果被封装成 CompletionEvent发送到Driver DAG Scheduler 。判断Task的类型是ShuffleMapTask会DagScheduler 会向 MapOutputTracker 注册 MapOutput status 信息。

那么map中的数据是如何通过BypassMergeSortShuffleWriter写入的?

代码语言:javascript
复制
// BypassMergeSortShuffleWriter
@Override
public void write(Iterator<Product2<K, V>> records) throws IOException {
  assert (partitionWriters == null);
  // [1] 创建处理mapTask所有分区数据commit提交writer
  ShuffleMapOutputWriter mapOutputWriter = shuffleExecutorComponents
      .createMapOutputWriter(shuffleId, mapId, numPartitions);
  try {
    // 如果没有数据,直接提交所有分区的commit, 并返回分区长度,获取mapStatus
    if (!records.hasNext()) {
      partitionLengths = mapOutputWriter.commitAllPartitions(
        ShuffleChecksumHelper.EMPTY_CHECKSUM_VALUE).getPartitionLengths();
      mapStatus = MapStatus$.MODULE$.apply(
        blockManager.shuffleServerId(), partitionLengths, mapId);
      return;
    }
    final SerializerInstance serInstance = serializer.newInstance();
    final long openStartTime = System.nanoTime();
    // [2] 为每个分区创建一个DiskBlockObjectWriter写入流和FileSegment文件段
    partitionWriters = new DiskBlockObjectWriter[numPartitions];
    partitionWriterSegments = new FileSegment[numPartitions];
    for (int i = 0; i < numPartitions; i++) {
      // [2.1] 每个分区创建个临时file和blockid, 并生成维护一个写入流
      final Tuple2<TempShuffleBlockId, File> tempShuffleBlockIdPlusFile =
          blockManager.diskBlockManager().createTempShuffleBlock();
      final File file = tempShuffleBlockIdPlusFile._2();
      final BlockId blockId = tempShuffleBlockIdPlusFile._1();
      DiskBlockObjectWriter writer =
        blockManager.getDiskWriter(blockId, file, serInstance, fileBufferSize, writeMetrics);
      if (partitionChecksums.length > 0) {
        writer.setChecksum(partitionChecksums[i]);
      }
      partitionWriters[i] = writer;
    } 
    // Creating the file to write to and creating a disk writer both involve interacting with
    // the disk, and can take a long time in aggregate when we open many files, so should be
    // included in the shuffle write time.
    writeMetrics.incWriteTime(System.nanoTime() - openStartTime);
    // [3] 依次将records写入到对应分区的写入流中, 并提交
    while (records.hasNext()) {
      final Product2<K, V> record = records.next();
      final K key = record._1();
      partitionWriters[partitioner.getPartition(key)].write(key, record._2());
    }

    // [3.1]依次对每个分区提交和flush写入流
    for (int i = 0; i < numPartitions; i++) {
      try (DiskBlockObjectWriter writer = partitionWriters[i]) {
        partitionWriterSegments[i] = writer.commitAndGet();
      }
    }
    // [4] 遍历所有分区的FileSegement, 并将其链接为一个文件,同时会调用writeMetadataFileAndCommit,为其生成索引文件
    partitionLengths = writePartitionedData(mapOutputWriter);
    mapStatus = MapStatus$.MODULE$.apply(
      blockManager.shuffleServerId(), partitionLengths, mapId);
  } catch (Exception e) {
    try {
      mapOutputWriter.abort(e);
    } catch (Exception e2) {
logger.error("Failed to abort the writer after failing to write map output.", e2);
      e.addSuppressed(e2);
    }
    throw e;
  }
}

综上,Bypass的writer步骤有四步:

  • [1] 创建处理mapTask所有分区数据commit提交writer
  • [2] 为每个分区创建一个DiskBlockObjectWriter写入流和FileSegment文件段
    • [2.1] 每个分区创建个临时file和blockid, 并生成维护一个DiskBlockObjectWriter写入流
  • [3] 依次将records写入到对应分区的写入流中, 并提交
    • [3.1]依次对每个分区提交和flush写入流
  • [4] 遍历所有分区的FileSegement, 并将其链接为一个文件,同时会调用writeMetadataFileAndCommit,为其生成索引文件

所以说, Bypass在进行写入时会为每个MapTask都会生成reduce分区个FileSegement, 写入时会并发的为所有的分区都创建临时文件和维护一个io的写入流, 最终在链接为一个文件。所以如果分区数特别多的情况下,是会维护很多io流,所以Bypass限制了分区的阈值。另外通过源码发现Bypass在实现过程中并没有使用buffer, 而是直接将数据写入到流中,这也就是为什么Bypass不能处理mapSide的预聚合的算子。

那么BypassMergeSortShuffleWriter 属于sort-based Shuffle 到底有没有排序呢?

接下来,我们再看下Bypass是如何将分区的FileSegement, 并将其链接为一个文件, 我们就需要详细看下writePartitionedData是如何实现的。

代码语言:javascript
复制
private long[] writePartitionedData(ShuffleMapOutputWriter mapOutputWriter) throws IOException {
  // Track location of the partition starts in the output file
  if (partitionWriters != null) {
    final long writeStartTime = System.nanoTime();
    try {
      for (int i = 0; i < numPartitions; i++) {
        // [1] 获取每个分区的 fileSegement 临时文件,和writer写出流
        final File file = partitionWriterSegments[i].file();
        ShufflePartitionWriter writer = mapOutputWriter.getPartitionWriter(i);
        if (file.exists()) {
          if (transferToEnabled) {
            // Using WritableByteChannelWrapper to make resource closing consistent between
            // this implementation and UnsafeShuffleWriter.
            Optional<WritableByteChannelWrapper> maybeOutputChannel = writer.openChannelWrapper();
            if (maybeOutputChannel.isPresent()) {
              writePartitionedDataWithChannel(file, maybeOutputChannel.get());
            } else {
              writePartitionedDataWithStream(file, writer);
            }
          } else {
            // [2] 将fileSegement合并为一个文件
            writePartitionedDataWithStream(file, writer);
          }
          if (!file.delete()) {
logger.error("Unable to delete file for partition {}", i);
          }
        }
      }
    } finally {
      writeMetrics.incWriteTime(System.nanoTime() - writeStartTime);
    }
    partitionWriters = null;
  }
  // [3] 提交所有的分区,传入每个分区数据的长度, 调用 writeMetadataFileAndCommit生成索引文件,记录每个分区的偏移量
  return mapOutputWriter.commitAllPartitions(getChecksumValues(partitionChecksums))
    .getPartitionLengths();
}

writePartitionedData是如何实现,有三个步骤:

  • [1] 获取每个分区的 fileSegement 临时文件,和writer写出流
  • [2] 将fileSegement合并为一个文件
  • [3] 提交所有的分区,传入每个分区数据的长度, 调用 writeMetadataFileAndCommit生成索引文件,记录每个分区的偏移量

bypass.png

总结, BypassMergeSortShuffleWriter 的实现是hash-style的方式,其中没有sort, 没有buffer,每一个mapTask都会生成分区数量个FileSegment, 最后再合并为一个File, 最终根据分区的长度为其生成索引文件。所以BypassMergeSortShuffleWriter在分区数量比较小的情况下,性能是比较佳的。其最终每个task会生成2个文件, 所以最终的生成文件数也是2 * M个文件。

今天就先到这里,通过上面的介绍,我们也留下些面试题:

  1. BypassMergeSortShuffleWriter和HashShuffle有什么区别?
  2. 为什么不保留HashShuffleManage, 而是将其作为SortShuffleManager中的一个Writer实现?
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2022-05-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • BypassMergeSortShuffleWriter 源码解析
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档