前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >移动机器人路径规划:人工势场法[通俗易懂]

移动机器人路径规划:人工势场法[通俗易懂]

作者头像
全栈程序员站长
发布2022-07-02 16:54:14
1.2K0
发布2022-07-02 16:54:14
举报

大家好,又见面了,我是你们的朋友全栈君。

人工势场法是一种原理比较简单的移动机器人路径规划算法,它将目标点位置视做势能最低点,将地图中的障碍物视为势能高点,计算整个已知地图的势场图,然后理想情况下,机器人就像一个滚落的小球,自动避开各个障碍物滚向目标点。

具体地,目标点的势能公式为:

e1
e1

其中写道,为防止距离目标点较远时的速度过快,可以采用分段函数的形式描述,后文会进行展示。 而障碍物的势能表示为:

e2
e2

即在障碍物周围某个范围内具有高势能,范围外视障碍物的影响为0。 最终将目标点和障碍物的势能相加,获得整张势能地图:

e3
e3

以下是参考链接中的源代码,比较容易懂:

代码语言:javascript
复制
""" Potential Field based path planner author: Atsushi Sakai (@Atsushi_twi) Ref: https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf """

from collections import deque
import numpy as np
import matplotlib.pyplot as plt

# Parameters
KP = 5.0  # attractive potential gain
ETA = 100.0  # repulsive potential gain
AREA_WIDTH = 30.0  # potential area width [m]
# the number of previous positions used to check oscillations
OSCILLATIONS_DETECTION_LENGTH = 3

show_animation = True


def calc_potential_field(gx, gy, ox, oy, reso, rr, sx, sy):
    """ 计算势场图 gx,gy: 目标坐标 ox,oy: 障碍物坐标列表 reso: 势场图分辨率 rr: 机器人半径 sx,sy: 起点坐标 """
    # 确定势场图坐标范围:
    minx = min(min(ox), sx, gx) - AREA_WIDTH / 2.0
    miny = min(min(oy), sy, gy) - AREA_WIDTH / 2.0
    maxx = max(max(ox), sx, gx) + AREA_WIDTH / 2.0
    maxy = max(max(oy), sy, gy) + AREA_WIDTH / 2.0
    # 根据范围和分辨率确定格数:
    xw = int(round((maxx - minx) / reso))
    yw = int(round((maxy - miny) / reso))

    # calc each potential
    pmap = [[0.0 for i in range(yw)] for i in range(xw)]

    for ix in range(xw):
        x = ix * reso + minx   # 根据索引和分辨率确定x坐标

        for iy in range(yw):
            y = iy * reso + miny  # 根据索引和分辨率确定x坐标
            ug = calc_attractive_potential(x, y, gx, gy)  # 计算引力
            uo = calc_repulsive_potential(x, y, ox, oy, rr)  # 计算斥力
            uf = ug + uo
            pmap[ix][iy] = uf

    return pmap, minx, miny


def calc_attractive_potential(x, y, gx, gy):
    """ 计算引力势能:1/2*KP*d """
    return 0.5 * KP * np.hypot(x - gx, y - gy)


def calc_repulsive_potential(x, y, ox, oy, rr):
    """ 计算斥力势能: 如果与最近障碍物的距离dq在机器人膨胀半径rr之内:1/2*ETA*(1/dq-1/rr)**2 否则:0.0 """
    # search nearest obstacle
    minid = -1
    dmin = float("inf")
    for i, _ in enumerate(ox):
        d = np.hypot(x - ox[i], y - oy[i])
        if dmin >= d:
            dmin = d
            minid = i

    # calc repulsive potential
    dq = np.hypot(x - ox[minid], y - oy[minid])

    if dq <= rr:
        if dq <= 0.1:
            dq = 0.1

        return 0.5 * ETA * (1.0 / dq - 1.0 / rr) ** 2
    else:
        return 0.0


def get_motion_model():
    # dx, dy
    # 九宫格中 8个可能的运动方向
    motion = [[1, 0],
              [0, 1],
              [-1, 0],
              [0, -1],
              [-1, -1],
              [-1, 1],
              [1, -1],
              [1, 1]]

    return motion


def oscillations_detection(previous_ids, ix, iy):
    """ 振荡检测:避免“反复横跳” """
    previous_ids.append((ix, iy))

    if (len(previous_ids) > OSCILLATIONS_DETECTION_LENGTH):
        previous_ids.popleft()

    # check if contains any duplicates by copying into a set
    previous_ids_set = set()
    for index in previous_ids:
        if index in previous_ids_set:
            return True
        else:
            previous_ids_set.add(index)
    return False


def potential_field_planning(sx, sy, gx, gy, ox, oy, reso, rr):

    # calc potential field
    pmap, minx, miny = calc_potential_field(gx, gy, ox, oy, reso, rr, sx, sy)

    # search path
    d = np.hypot(sx - gx, sy - gy)
    ix = round((sx - minx) / reso)
    iy = round((sy - miny) / reso)
    gix = round((gx - minx) / reso)
    giy = round((gy - miny) / reso)

    if show_animation:
        draw_heatmap(pmap)
        # for stopping simulation with the esc key.
        plt.gcf().canvas.mpl_connect('key_release_event',
                lambda event: [exit(0) if event.key == 'escape' else None])
        plt.plot(ix, iy, "*k")
        plt.plot(gix, giy, "*m")

    rx, ry = [sx], [sy]
    motion = get_motion_model()
    previous_ids = deque()

    while d >= reso:
        minp = float("inf")
        minix, miniy = -1, -1
        # 寻找8个运动方向中势场最小的方向
        for i, _ in enumerate(motion):
            inx = int(ix + motion[i][0])
            iny = int(iy + motion[i][1])
            if inx >= len(pmap) or iny >= len(pmap[0]) or inx < 0 or iny < 0:
                p = float("inf")  # outside area
                print("outside potential!")
            else:
                p = pmap[inx][iny]
            if minp > p:
                minp = p
                minix = inx
                miniy = iny
        ix = minix
        iy = miniy
        xp = ix * reso + minx
        yp = iy * reso + miny
        d = np.hypot(gx - xp, gy - yp)
        rx.append(xp)
        ry.append(yp)
        # 振荡检测,以避免陷入局部最小值:
        if (oscillations_detection(previous_ids, ix, iy)):
            print("Oscillation detected at ({},{})!".format(ix, iy))
            break

        if show_animation:
            plt.plot(ix, iy, ".r")
            plt.pause(0.01)

    print("Goal!!")

    return rx, ry


def draw_heatmap(data):
    data = np.array(data).T
    plt.pcolor(data, vmax=100.0, cmap=plt.cm.Blues)


def main():
    print("potential_field_planning start")

    sx = 0.0  # start x position [m]
    sy = 10.0  # start y positon [m]
    gx = 30.0  # goal x position [m]
    gy = 30.0  # goal y position [m]
    grid_size = 0.5  # potential grid size [m]
    robot_radius = 5.0  # robot radius [m]
    # 以下障碍物坐标是我进行修改后的,用来展示人工势场法的困于局部最优的情况:
    ox = [15.0, 5.0, 20.0, 25.0, 12.0, 15.0, 19.0, 28.0, 27.0, 23.0, 30.0, 32.0]  # obstacle x position list [m]
    oy = [25.0, 15.0, 26.0, 25.0, 12.0, 20.0, 29.0, 28.0, 26.0, 25.0, 28.0, 27.0]  # obstacle y position list [m]

    if show_animation:
        plt.grid(True)
        plt.axis("equal")

    # path generation
    _, _ = potential_field_planning(
        sx, sy, gx, gy, ox, oy, grid_size, robot_radius)

    if show_animation:
        plt.show()


if __name__ == '__main__':
    print(__file__ + " start!!")
    main()
    print(__file__ + " Done!!")

人工势场法的一项主要缺点就是可能会落入局部最优解,下图是源代码运行后的结果:

p1
p1

下面是在我添加了一些障碍物后,人工势场法困于局部最优解的情况:虽然还没有到达目标点,但势场决定了路径无法再前进。

p2
p2

需要注意的是,源代码在计算目标点势场的时候,使用的是某x,y位置距离目标点的距离的一次项,并未如课件中所示使用二次项,也是为了使势场变化没有那么快。下面是按照课件中所说,使用距离的二次项运行的结果,我们可以看到,为运行正常,KP需要调得很低:

代码语言:javascript
复制
KP = 0.1
def calc_attractive_potential(x, y, gx, gy):
    """ 计算引力势能:1/2*KP*d^2 """
    return 0.5 * KP * np.hypot(x - gx, y - gy)**2

正常运行:

p3
p3

困在局部最优点:

p4
p4

可以从势场图中看到,引力变化较上一个例子快得多。

最后,我们将程序修改成上面课件截图中所示的分段函数:

代码语言:javascript
复制
KP = 0.25
dgoal = 10
def calc_attractive_potential(x, y, gx, gy):
    """ 计算引力:如课件截图 """
    dg = np.hypot(x - gx, y - gy)
    if dg<=dgoal:
        U = 0.5 * KP * np.hypot(x - gx, y - gy)**2
    else:
        U = dgoal*KP*np.hypot(x - gx, y - gy) - 0.5*KP*dgoal
    return U

正常运行:

p5
p5

困于局部最优:

p6
p6

可以看到引力势场分段的效果。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/148611.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档