从内存结构来看
这次所讲述的是运行时数据区的最后一个部分

从线程共享与否的角度来看
ThreadLocal:如何保证多个线程在并发环境下的安全性?典型应用就是数据库连接管理,以及独立会话管理

栈、堆、方法区的交互关系
下面就涉及了对象的访问定位

方法区的位置

方法区的基本理解
方法区主要存放的是 Class,而堆中主要存放的是实例化的对象
代码举例
public class EdenSurvivorTest {
public static void main(String[] args) {
System.out.println("我只是来打个酱油~");
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
Hotspot 方法区的演进过程


方法区的大小不必是固定的,JVM可以根据应用的需要动态调整。
JDK7 之前版本设置永久代大小

JDK8 版本设置元空间大小
配置元空间大小示例
/**
* 测试设置方法区大小参数的默认值
*
* jdk7及以前:
* -XX:PermSize=100m -XX:MaxPermSize=100m
*
* jdk8及以后:
* -XX:MetaspaceSize=100m -XX:MaxMetaspaceSize=100m
*
* @author shkstart shkstart@126.com
* @create 2020 12:16
*/
public class MethodAreaDemo {
public static void main(String[] args) {
System.out.println("start...");
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("end...");
}
}-XX:MetaspaceSize=100m -XX:MaxMetaspaceSize=100mC:\Users\Heygo>jps
C:\Users\Heygo>jinfo -flag MetaspaceSize pId
C:\Users\Heygo>jinfo -flag MaxMetaspaceSize pId
方法区 OOM 举例
/**
* jdk6/7中:
* -XX:PermSize=10m -XX:MaxPermSize=10m
*
* jdk8中:
* -XX:MetaspaceSize=10m -XX:MaxMetaspaceSize=10m
*
* @author shkstart shkstart@126.com
* @create 2020 22:24
*/
public class OOMTest extends ClassLoader {
public static void main(String[] args) {
int j = 0;
try {
OOMTest test = new OOMTest();
for (int i = 0; i < 10000; i++) {
//创建ClassWriter对象,用于生成类的二进制字节码
ClassWriter classWriter = new ClassWriter(0);
//指明版本号,修饰符,类名,包名,父类,接口
classWriter.visit(Opcodes.V1_6, Opcodes.ACC_PUBLIC, "Class" + i, null, "java/lang/Object", null);
//返回byte[]
byte[] code = classWriter.toByteArray();
//类的加载
test.defineClass("Class" + i, code, 0, code.length);//Class对象
j++;
}
} finally {
System.out.println(j);
}
}
}不设置元空间的上限
10000设置元空间的上限
-XX:MetaspaceSize=10m -XX:MaxMetaspaceSize=10mcom.atguigu.java.OOMTest
Exception in thread "main" java.lang.OutOfMemoryError: Metaspace
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:763)
at java.lang.ClassLoader.defineClass(ClassLoader.java:642)
at com.atguigu.java.OOMTest.main(OOMTest.java:29)
8531如何解决 OOM?
方法区(Method Area)存储什么?

《深入理解Java虚拟机》书中对方法区(Method Area)存储内容描述如下:它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等。

类型信息
对每个加载的类型(类class、接口interface、枚举enum、注解annotation),JVM必须在方法区中存储以下类型信息:
域(Field)信息
方法(Method)信息
JVM必须保存所有方法的以下信息,同域信息一样包括声明顺序:
代码示例
/** * 测试方法区的内部构成 * * @author shkstart shkstart@126.com * @create 2020 23:39 */public class MethodInnerStrucTest extends Object implements Comparable<String>, Serializable { //属性 public int num = 10; private static String str = "测试方法的内部结构"; //构造器没写 //方法 public void test1() { int count = 20; System.out.println("count = " + count); } public static int test2(int cal) { int result = 0; try { int value = 30; result = value / cal; } catch (Exception e) { e.printStackTrace(); } return result; } @Override public int compareTo(String o) { return 0; }}javap -v -p MethodInnerStrucTest.class > Text.txt类型信息
public class com.atguigu.java.MethodInnerStrucTest extends java.lang.Object implements java.lang.Comparable<java.lang.String>, java.io.Serializable域信息
public int num; descriptor: I flags: ACC_PUBLIC private static java.lang.String str; descriptor: Ljava/lang/String; flags: ACC_PRIVATE, ACC_STATIC方法信息
public void test1(); descriptor: ()V flags: ACC_PUBLIC Code: stack=3, locals=2, args_size=1 0: bipush 20 2: istore_1 3: getstatic #3 // Field java/lang/System.out:Ljava/io/PrintStream; 6: new #4 // class java/lang/StringBuilder 9: dup 10: invokespecial #5 // Method java/lang/StringBuilder."<init>":()V 13: ldc #6 // String count = 15: invokevirtual #7 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder; 18: iload_1 19: invokevirtual #8 // Method java/lang/StringBuilder.append:(I)Ljava/lang/StringBuilder; 22: invokevirtual #9 // Method java/lang/StringBuilder.toString:()Ljava/lang/String; 25: invokevirtual #10 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 28: return LineNumberTable: line 17: 0 line 18: 3 line 19: 28 LocalVariableTable: Start Length Slot Name Signature 0 29 0 this Lcom/atguigu/java/MethodInnerStrucTest; 3 26 1 count Inon-final 类型的类变量
代码示例
/** * non-final的类变量 * @author shkstart shkstart@126.com * @create 2020 20:37 */public class MethodAreaTest { public static void main(String[] args) { Order order = null; order.hello(); System.out.println(order.count); }}class Order { public static int count = 1; public static final int number = 2; public static void hello() { System.out.println("hello!"); }}// 程序运行结果hello!1全局常量:static final
代码示例
/** * non-final的类变量 * @author shkstart shkstart@126.com * @create 2020 20:37 */public class MethodAreaTest { public static void main(String[] args) { Order order = null; order.hello(); System.out.println(order.count); }}class Order { public static int count = 1; public static final int number = 2; public static void hello() { System.out.println("hello!"); }} public static int count; descriptor: I flags: ACC_PUBLIC, ACC_STATIC public static final int number; descriptor: I flags: ACC_PUBLIC, ACC_STATIC, ACC_FINAL ConstantValue: int 2运行时常量池 VS 常量池

常量池

为什么需要常量池?
比如:如下的代码:
public class SimpleClass { public void sayHello() { System.out.println("hello"); }}
常量池中有啥?
常量池代码举例
/** * 测试方法区的内部构成 * * @author shkstart shkstart@126.com * @create 2020 23:39 */public class MethodInnerStrucTest extends Object implements Comparable<String>, Serializable { //属性 public int num = 10; private static String str = "测试方法的内部结构"; //构造器没写 //方法 public void test1() { int count = 20; System.out.println("count = " + count); } public static int test2(int cal) { int result = 0; try { int value = 30; result = value / cal; } catch (Exception e) { e.printStackTrace(); } return result; } @Override public int compareTo(String o) { return 0; }} public void test1(); descriptor: ()V flags: ACC_PUBLIC Code: stack=3, locals=2, args_size=1 0: bipush 20 2: istore_1 3: getstatic #3 // Field java/lang/System.out:Ljava/io/PrintStream; 6: new #4 // class java/lang/StringBuilder 9: dup 10: invokespecial #5 // Method java/lang/StringBuilder."<init>":()V 13: ldc #6 // String count = 15: invokevirtual #7 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder; 18: iload_1 19: invokevirtual #8 // Method java/lang/StringBuilder.append:(I)Ljava/lang/StringBuilder; 22: invokevirtual #9 // Method java/lang/StringBuilder.toString:()Ljava/lang/String; 25: invokevirtual #10 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 28: return LineNumberTable: line 20: 0 line 21: 3 line 22: 28 LocalVariableTable: Start Length Slot Name Signature 0 29 0 this Lcom/atguigu/java/MethodInnerStrucTest; 3 26 1 count IConstant pool: #1 = Methodref #18.#52 // java/lang/Object."<init>":()V #2 = Fieldref #17.#53 // com/atguigu/java/MethodInnerStrucTest.num:I #3 = Fieldref #54.#55 // java/lang/System.out:Ljava/io/PrintStream; #4 = Class #56 // java/lang/StringBuilder #5 = Methodref #4.#52 // java/lang/StringBuilder."<init>":()V #6 = String #57 // count = #7 = Methodref #4.#58 // java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder; #8 = Methodref #4.#59 // java/lang/StringBuilder.append:(I)Ljava/lang/StringBuilder; #9 = Methodref #4.#60 // java/lang/StringBuilder.toString:()Ljava/lang/String; #10 = Methodref #61.#62 // java/io/PrintStream.println:(Ljava/lang/String;)V #11 = Class #63 // java/lang/Exception #12 = Methodref #11.#64 // java/lang/Exception.printStackTrace:()V #13 = Class #65 // java/lang/String #14 = Methodref #17.#66 // com/atguigu/java/MethodInnerStrucTest.compareTo:(Ljava/lang/String;)I #15 = String #67 // 测试方法的内部结构 #16 = Fieldref #17.#68 // com/atguigu/java/MethodInnerStrucTest.str:Ljava/lang/String; #17 = Class #69 // com/atguigu/java/MethodInnerStrucTest #18 = Class #70 // java/lang/Object #19 = Class #71 // java/lang/Comparable #20 = Class #72 // java/io/Serializable #21 = Utf8 num #22 = Utf8 I #23 = Utf8 str #24 = Utf8 Ljava/lang/String; #25 = Utf8 <init> #26 = Utf8 ()V #27 = Utf8 Code #28 = Utf8 LineNumberTable #29 = Utf8 LocalVariableTable #30 = Utf8 this #31 = Utf8 Lcom/atguigu/java/MethodInnerStrucTest; #32 = Utf8 test1 #33 = Utf8 count #34 = Utf8 test2 #35 = Utf8 (I)I #36 = Utf8 value #37 = Utf8 e #38 = Utf8 Ljava/lang/Exception; #39 = Utf8 cal #40 = Utf8 result #41 = Utf8 StackMapTable #42 = Class #63 // java/lang/Exception #43 = Utf8 compareTo #44 = Utf8 (Ljava/lang/String;)I #45 = Utf8 o #46 = Utf8 (Ljava/lang/Object;)I #47 = Utf8 <clinit> #48 = Utf8 Signature #49 = Utf8 Ljava/lang/Object;Ljava/lang/Comparable<Ljava/lang/String;>;Ljava/io/Serializable; #50 = Utf8 SourceFile #51 = Utf8 MethodInnerStrucTest.java #52 = NameAndType #25:#26 // "<init>":()V #53 = NameAndType #21:#22 // num:I #54 = Class #73 // java/lang/System #55 = NameAndType #74:#75 // out:Ljava/io/PrintStream; #56 = Utf8 java/lang/StringBuilder #57 = Utf8 count = #58 = NameAndType #76:#77 // append:(Ljava/lang/String;)Ljava/lang/StringBuilder; #59 = NameAndType #76:#78 // append:(I)Ljava/lang/StringBuilder; #60 = NameAndType #79:#80 // toString:()Ljava/lang/String; #61 = Class #81 // java/io/PrintStream #62 = NameAndType #82:#83 // println:(Ljava/lang/String;)V #63 = Utf8 java/lang/Exception #64 = NameAndType #84:#26 // printStackTrace:()V #65 = Utf8 java/lang/String #66 = NameAndType #43:#44 // compareTo:(Ljava/lang/String;)I #67 = Utf8 测试方法的内部结构 #68 = NameAndType #23:#24 // str:Ljava/lang/String; #69 = Utf8 com/atguigu/java/MethodInnerStrucTest #70 = Utf8 java/lang/Object #71 = Utf8 java/lang/Comparable #72 = Utf8 java/io/Serializable #73 = Utf8 java/lang/System #74 = Utf8 out #75 = Utf8 Ljava/io/PrintStream; #76 = Utf8 append #77 = Utf8 (Ljava/lang/String;)Ljava/lang/StringBuilder; #78 = Utf8 (I)Ljava/lang/StringBuilder; #79 = Utf8 toString #80 = Utf8 ()Ljava/lang/String; #81 = Utf8 java/io/PrintStream #82 = Utf8 println #83 = Utf8 (Ljava/lang/String;)V #84 = Utf8 printStackTrace常量池总结
常量池、可以看做是一张表,虚拟机指令根据这张常量表找到要执行的类名、方法名、参数类型、字面量等类型
运行时常量池
方法区图解示例
/** * @author shkstart shkstart@126.com * @create 2020 14:28 */public class MethodAreaDemo { public static void main(String[] args) { int x = 500; int y = 100; int a = x / y; int b = 50; System.out.println(a + b); }}图解字节码指令执行流程















关于【符号引用 --> 直接饮用】的理解
关于程序计数器的说明
程序计数器始终计算的都是当前代码运行的位置,目的是为了方便记录方法调用后能够正常返回,或者是进行了CPU切换后,也能回来到原来的代码进行执行。
关于永久代的说明
JDK 版本 | 演变细节 |
|---|---|
JDK1.6及以前 | 有永久代(permanent generation),静态变量存储在永久代上 |
JDK1.7 | 有永久代,但已经逐步 “去永久代”,字符串常量池,静态变量移除,保存在堆中 |
JDK1.8 | 无永久代,类型信息,字段,方法,常量保存在本地内存的元空间,但字符串常量池、静态变量仍然在堆中。 |
JDK6
方法区由永久代实现,使用 JVM 虚拟机内存

JDK7
方法区由永久代实现,使用 JVM 虚拟机内存

JDK8
方法区由元空间实现,使用物理机本地内存

永久代为什么要被元空间替代?
官方文档
http://openjdk.java.net/jeps/122
由于类的元数据分配在本地内存中,元空间的最大可分配空间就是系统可用内存空间,这项改动是很有必要的,原因有:
Exception in thread 'dubbo client x.x connector' java.lang.OutOfMemoryError:PermGen space字符串常量池 StringTable 为什么要调整位置?
静态变量存放在那里?
代码示例 1
/** * 结论: * 静态变量在jdk6/7存在与永久代中,在jdk8存在于堆中 * 静态引用对应的对象实体始终都存在堆空间 * * jdk7: * -Xms200m -Xmx200m -XX:PermSize=300m -XX:MaxPermSize=300m -XX:+PrintGCDetails * jdk 8: * -Xms200m -Xmx200m -XX:MetaspaceSize=300m -XX:MaxMetaspaceSize=300m -XX:+PrintGCDetails * @author shkstart shkstart@126.com * @create 2020 21:20 */public class StaticFieldTest { private static byte[] arr = new byte[1024 * 1024 * 100];//100MB public static void main(String[] args) { System.out.println(StaticFieldTest.arr); }}-Xms200m -Xmx200m -XX:MetaspaceSize=300m -XX:MaxMetaspaceSize=300m -XX:+PrintGCDetails[B@4554617cHeap PSYoungGen total 59904K, used 5171K [0x00000000fbd80000, 0x0000000100000000, 0x0000000100000000) eden space 51712K, 10% used [0x00000000fbd80000,0x00000000fc28ceb0,0x00000000ff000000) from space 8192K, 0% used [0x00000000ff800000,0x00000000ff800000,0x0000000100000000) to space 8192K, 0% used [0x00000000ff000000,0x00000000ff000000,0x00000000ff800000) ParOldGen total 136704K, used 102400K [0x00000000f3800000, 0x00000000fbd80000, 0x00000000fbd80000) object space 136704K, 74% used [0x00000000f3800000,0x00000000f9c00010,0x00000000fbd80000) Metaspace used 3473K, capacity 4496K, committed 4864K, reserved 1056768K class space used 381K, capacity 388K, committed 512K, reserved 1048576K代码示例 2
/** * 《深入理解Java虚拟机》中的案例: * staticObj、instanceObj、localObj存放在哪里? * * @author shkstart shkstart@126.com * @create 2020 11:39 */public class StaticObjTest { static class Test { static ObjectHolder staticObj = new ObjectHolder(); ObjectHolder instanceObj = new ObjectHolder(); void foo() { ObjectHolder localObj = new ObjectHolder(); System.out.println("done"); } } private static class ObjectHolder { } public static void main(String[] args) { Test test = new StaticObjTest.Test(); test.foo(); }}

方法区垃圾收集
方法区常量的回收
方法区类的回收
判定一个常量是否“废弃”还是相对简单,而要判定一个类型是否属于“不再被使用的类”的条件就比较苛刻了。需要同时满足下面三个条件:
Java虚拟机被允许对满足上述三个条件的无用类进行回收,这里说的仅仅是“被允许”,而并不是和对象一样,没有引用了就必然会回收。关于是否要对类型进行回收,HotSpot虚拟机提供了-Xnoclassgc参数进行控制,还可以使用-verbose:class 以及 -XX:+TraceClass-Loading、-XX:+TraceClassUnLoading查看类加载和卸载信息
在大量使用反射、动态代理、CGLib等字节码框架,动态生成JSP以及OSGi这类频繁自定义类加载器的场景中,通常都需要Java虚拟机具备类型卸载的能力,以保证不会对方法区造成过大的内存压力。
