前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >头秃警告,五个顶级算法大佬创造的算法究竟有多牛逼?

头秃警告,五个顶级算法大佬创造的算法究竟有多牛逼?

作者头像
TechFlow-承志
发布2022-08-26 15:31:47
5540
发布2022-08-26 15:31:47
举报
文章被收录于专栏:TechFlow

作者 | 梁唐

大家好,我是梁唐。

熟悉Python的同学可能知道,在Python当中我们可以使用heapq这个库在O(n\log n) 的时间内筛选出前K大或者是前K小的元素,我们在之前的文章当中也曾讨论过。这种快速筛选元素的算法称为快速选择算法。

如果你看过之前的归并、分治法的文章,相信看懂这篇文章也并不困难。如果没有的话,建议先回顾一下之前的文章。

思维推导

我们现在知道了算法的目的,即快速地找出最大或最小的若干个元素,不知道的是算法的原理。

在我们查阅正确做法之前,不妨试着自己来推导一下,看看能不能不看答案自己把算法的原理和逻辑推导出来。这其实才是算法能力的精髓,即是应用已知能力解决未知问题的能力。

假设当下我们并不知道正确的解法是什么,我们想要尽可能快地找到前K大的元素。如果一个一个找这个过程会很慢,除非我们可以做到O(1) 的查找。

显然这是不可能的,因为即使是平衡树这类快速查找的数据结构,单次查找也需要O(logn) 。所以一个一个找是不行的。那么就只剩下一批一批找,批量查找又有两种,一种是直接查找K个,还有一种是多次查找,最后得到正解。

我们并不知道哪种方法更靠谱,但是第一种看起来不太可行,因为它就是问题本身,第二种方法看起来稍微可行一些。在这个问题下,我们并没有多余的信息,想要直接查找K个元素应该不太容易。所以可能通过多次查找得到解是比较好的方法。多次查找也可以简单分为两种情况,一种是每次查找一批,最后合并在一起,还有一种是每次缩小查找的范围,最后锁定答案。

到这里,如果你对分治算法熟悉的话,你会觉得它和分治算法的应用场景很相似。我们想要求解一个比较大的问题,但是直接求解很困难,所以我们将它拆解,将大问题拆解成小问题,通过对小问题的解决来搞定原本的大问题。

我们目前比较熟悉的分治算法好像只有归并排序和快速排序这两个,我们可以试着把这两个算法往这个问题上套。

归并排序核心思路是每次将数组一分为二,然后通过这两个数组归并的过程找到我们想要的解法。这个方案可行,但是和排序并没有区别。我们文章开头就已经说过了,我们想要寻找的是比排序更快的算法。

再看快排,它每次是设置一个标杆,然后对数组当中的元素进行调整,保证比标杆小的元素都在它的左边,比它大的都在它的右边。标杆最后在的位置就是数据有序之后它正确的位置。这个方法好像和我们想要的很接近。

于是,我们就这样顺藤摸瓜,找到了正确的方法。当然实际的思考过程可能要比这个复杂,考虑的情况也会更多,但是总体的思维推导过程应该是差不多的。

同样是解题,新手往往靠灵光一闪,而高手都是有一个完整的思维链。很多算法问题看起来一头雾水,但其实是有迹可循的。训练出一个思维模型来寻找正确的解法是新手通往高手的必经之路,也是算法能力的核心。

算法原理

我们来仔细分析一下,一次快速排序的调整之后,我们可以确定标杆的位置,这样一来就有三种情况。

第一种,它所在的位置刚好是K,说明它前面的这一段数组就是答案,直接返回即可。如果它小于K,说明这个标杆取小了,我们应该在它右侧的数组当中重新选择一个标杆。如果它小于K说明这个标杆取大了,我们可以直接它右侧的元素,因为它右侧的元素一定不在答案里。

我们可以参考一下下面这张图:

img

思路有了,代码就不难写了:

代码语言:javascript
复制
def quick_select_without_optimizer(arr, k):
    n = len(arr)
    # 如果k大于n,没啥好说的,直接返回
    if k >= n:
        return arr

    # 缓存
    buffer = []
    while arr:
        # 选择最后一个元素作为标杆
        mark = arr.pop()
        less, greater = [], []
        # 遍历数组,将元素分为less和greater
        for x in arr:
            if x <= mark:
                less.append(x)
            else:
                greater.append(x)
        # 判断三种情况,如果相等直接返回
        if len(less) == k:
            return buffer + less
        # 如果小于,将less存入buffer,因为它一定是答案的一部分,可以简化计算
        elif len(less) < k:
            buffer += less
            # k要减去less的长度
            k -= len(less)
            arr = [mark] + greater
        else:
            # 如果大于,直接舍弃右边
            arr = less

复杂度分析

写完了代码,我们来分析一下算法的复杂度。有些同学可能会有些疑惑,这个算法和快排基本上一样,为什么会更快呢?

这是因为我们每次迭代的过程中,数组都会被舍弃一部分,我们把完整的搜索树画出来大概是下面这个样子。

可以看到,虽然总的迭代次数还是log_2n次,但是每一层当中遍历的元素个数不再是n。我们假设每次迭代数组的长度都会折损一半,到数组长度等于1的时候结束。我们把每一层遍历的长度全部相加,就得到了一个等比数列:1, 2, 4, \cdots, n

这个等比数列的长度是log_2n ,我们套用等比数列求和公式:

\displaystyle S=\frac{a_1(1-q^n))}{1-q}=\frac{1(1-2n)}{1-2}\approx 2n

也就是说虽然它的形式看起来和快排很接近,但是由于我们在遍历的过程当中,每次都会缩小遍历的范围,所以整体的复杂度控制在了O(n) 。当然这也只是理想情况下的复杂度,一般情况下随着数据分布的不同,实际的复杂度也会稍有浮动。可以理解成乘上了一个浮动的常数。

之前我们分析快排的时候曾经得出过结论,如果原始数组是逆序的,那么快排的复杂度会退化到O(n^2) 。我们当前的快速选择算法和快排算法几乎如出一辙,整个的思路是一样的,也就是说,在数组是逆序的情况下同样会遇到复杂度降级的问题。不过好在这个问题并不是不可解的,我们下面就来分析一下关于这种情况的优化。

优化探索

优化目标很明显,就是极端情况下复杂度会出现降级的情况。问题出现的原因也已经知道了,是由于数组逆序,并且我们默认选择最后一个元素作为标杆。所以想要解决这个问题的入手点就有两个,一个是数组逆序的情况,一个是标杆的选择。

相比于标杆的选择来说,数组逆序情况的判断不太可取。因为对于不是严格逆序的数组,也一样可能出现复杂度很大的情况。如果我们通过逆序数来判断数组的逆序程度,又会带来额外的开销,所以只能从标杆的选择入手。之前我们默认选择最后一个元素,其实这并不是元素位置的问题,无论选择什么样的位置,都有可能出现对应的极端情况使得复杂度升级,所以简单地改变选择的位置是不能解决问题的,我们需要针对这个问题单独设计算法。

一个比较简单的思路是我们可以选择首尾和中间三个位置的元素,然后选择其中第二大的元素作为标杆。这种方案实现简单,效果也不错,但是分析一下的话,其实没有从根本上解决问题,因为依然还是可能出现极端情况,比如首尾和中间刚好是三个最大的元素。虽然这个概率比单个元素出现最大降低了很多。还有一个问题是,这样选出来的标杆不能保证分割出来的数组是平衡的。

BFPRT算法

这里要给大家介绍一个牛哄哄的算法,说它牛不是因为它很难,而是因为它真的很牛。它的名字叫BFPRT,是由Blum、Floyd、Pratt、Rivest、Tarjan五位大牛一起发明的。如果你读过《算法导论》的话,一定会找到其中好几个人的名字。该算法可以找到一个比较合适的标杆,用来在快排和快速选择的时候切分数组。

算法的流程很简单,一共只有几个步骤:

  1. 判断数组元素是否大于5,如果小于5,对它进行排序,并返回数组的中位数
  2. 如果元素大于5个,对数组进行分组,每5个元素分成一组,允许最后一个分组元素不足5个。
  3. 对于每个分组,对它进行插入排序
  4. 选择出每个分组排序之后的中位数,组成新的数组
  5. 重复以上操作

算法思路很朴素,其实就是一个不断选择中位数的过程。

我们先来证明它的正确性,我们假设最终选出来的数是x,一个长度为n的数组会产生n/5个分组。由于我们取的是中位数的中位数,所以在这n/5个分组当中,有一半的中位数小于x,还有一半大于x。在中位数大于它的分组当中至少有3个元素大于等于它,所以整体而言,至少有 n/10 * 3 = 0.3n的元素大于等于x,同理也可以证明有30%元素小于等于x。所以最坏的情况选出来的x是70%位置的数。

根据BFPRT算法的定义很容易写出代码:

代码语言:javascript
复制
def bfprt(arr, l=None, r=None):
    if l is None or r is None:
        l, r = 0, len(arr)
    length = r - l
    # 如果长度小于5,直接返回中位数
    if length <= 5:
        arr[l: r] = insert_sort(arr[l: r])
        return l + length // 2
    medium_num = l
    start = l
    # 否则每5个数分组
    while start + 5 < r:
        # 对每5个数进行插入排序
        arr[start: start + 5] = insert_sort(arr[start: start + 5])
        arr[medium_num], arr[start + 2] = arr[start + 2], arr[medium_num]
        medium_num += 1
        start += 5
    # 特殊处理最后不足5个的情况
    if start < r:
        arr[start:r] = insert_sort(arr[start:r])
        _l = r - start
        arr[medium_num], arr[start + _l // 2] = arr[start + _l // 2], arr[medium_num]
        medium_num += 1
    # 递归调用,对中位数继续求中位数
    return bfprt(arr, l, medium_num)

这个代码写出来了之后,剩下的就容易了,改动量并不大,只需要加上两行即可:

代码语言:javascript
复制
def quick_select(arr, k):
    n = len(arr)
    if k >= n:
        return arr

    # 获取标杆的下标
    mark = bfprt(arr)
    arr[mark], arr[-1] = arr[-1], arr[mark]
    buffer = []

    while arr:
        mark = arr.pop()
        less, greater = [], []
        for x in arr:
            if x <= mark:
                less.append(x)
            else:
                greater.append(x)
        if len(less) == k:
            return buffer + less
        elif len(less) < k:
            k -= len(less)
            buffer += less
            arr = [mark] + greater
        else:
            arr = less

看代码的话和上面基本上没有什么差别,唯一的不同就是选择之前先获取了一下标杆。在这里我只是在一开始的时候调用了一次,当然也可以在while循环里每一次都调用,不过我个人觉得没什么必要,因为在获取标杆的时候,会将数组全部打乱,足够避免极端情况了。

今天的文章篇幅有点长,但内容还可以,尤其是BFPRT算法,真的是非常经典,算得上是不复杂但是很巧妙了。感兴趣的同学可以了解一下它背后五个大佬的故事,估计比我的文章精彩得多。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-07-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Coder梁 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 思维推导
  • 算法原理
  • 复杂度分析
  • 优化探索
  • BFPRT算法
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档