大家好,又见面了,我是你们的朋友全栈君。
在讲解kafka限流机制之前
我想先讲解一下Kafka中的数据采集和统计机制 你会不会好奇,kafka监控中,那些数据都是怎么计算出来的 比如下图这些指标
这些数据都是通过Jmx获取的kafka监控指标, 那么我们今天老探讨一下,这些指标都是怎么被计算出来的
在开始分析之前,我们可以 自己思考一下
如果让你统计前一分钟内的流速,你会怎么统计才能够让数字更加精确呢?
我相信你脑海中肯定出现了一个词:滑动窗口
在kafka的数据采样和统计中,也是用了这个方法, 通过多个样本Sample
进行采样,并合并统计
当然这一个过程少不了滑动窗口的影子
我们先看下整个Kafka的数据采集和统计机制的类图
看着整个类图好像很复杂,但是最核心的就是两个Interface接口
Measurable:
可测量的、可统计的 Interface。这个Interface 有一个方法, 专门用来计算需要被统计的值的
/** * 测量这个数量并将结果作为双精度返回 * 参数: * config – 此指标的配置 * now – 进行测量的 POSIX 时间(以毫秒为单位) * 返回: * 测量值 */
double measure(MetricConfig config, long now);
比如说返回 近一分钟的bytesIn
Stat:
记录数据, 上面的是统计,但是统计需要数据来支撑, 这个Interface就是用来做记录的,这个Interface有一个方法
/** * 记录给定的值 * 参数: * config – 用于该指标的配置 * value – 要记录的值 * timeMs – 此值发生的 POSIX 时间(以毫秒为单位) */
void record(MetricConfig config, double value, long timeMs);
有了这两个接口,就基本上可以记录数据和数据统计了
当然这两个接口都有一个 MetricConfig
对象
这是一个统计配置类, 主要是定义 采样的样本数、单个样本的时间窗口大小、单个样本的事件窗口大小、限流机制 有了这样一个配置了,就可以自由定义时间窗口的大小,和采样的样本数之类的影响最终数据精度的变量。
这里我需要对两个参数重点说明一下
单个样本的时间窗口大小: 当前记录时间 – 当前样本的开始时间 >= 此值 则需要使用下一个样本。 单个样本的事件窗口大小: 当前样本窗口时间次数 >= 此值 则需要使用下一个样本
在整个统计中,不一定是按照时间窗口来统计的, 也可以按照事件窗口来统计, 具体按照不同需求选择配置
好了,大家脑海里面已经有了最基本的概念了,我们接下来就以一个kafka内部经常使用的 SampledStat
记录和统计的抽象类来好好的深入分析理解一下。
这个记录统计抽象类,是按照采样的形式来计算的。 里面使用了一个或者多个样本进行采样统计
List<Sample> samples
; 当前使用的样本:current
样本初始化的值:initialValue
SampledStat :
实现了MeasurableStat
的抽象类,说明它又能采集记录数据,又能统计分析数据
当然它自身也定义了有两个抽象方法
/** 更新具体样本的数值 (单个样本)**/
protected abstract void update(Sample sample, MetricConfig config, double value, long timeMs);
/**组合所有样本的数据 来统计出想要的数据 **/
public abstract double combine(List<Sample> samples, MetricConfig config, long now);
如上图所示, 是一个SampledStat
的图形化展示, 其中定义了 若干个样本 Sample
记录数据
@Override
public void record(MetricConfig config, double value, long timeMs) {
Sample sample = current(timeMs);
if (sample.isComplete(timeMs, config))
sample = advance(config, timeMs);
update(sample, config, value, timeMs);
sample.eventCount += 1;
}
当前时间 - 当前Sample的开始时间 >= 配置的时间窗口值 或者 事件总数 >= 配置的事件窗口值
/** 当前时间 - 当前Sample的开始时间 >= 配置的时间窗口值 或者 事件总数 >= 配置的事件窗口值 **/
public boolean isComplete(long timeMs, MetricConfig config) {
return timeMs - lastWindowMs >= config.timeWindowMs() || eventCount >= config.eventWindow();
}
统计数据
/** 测量 统计 数据**/
@Override
public double measure(MetricConfig config, long now) {
// 重置过期样本
purgeObsoleteSamples(config, now);
// 组合所有样本数据,并展示最终统计数据,具体实现类来实现该方法
return combine(this.samples, config, now);
}
Avg
, 它的计算逻辑就是把所有的样本数据值累加并除以累积的次数那我们再来看看不同的统计实现类
一个简单的
SampledStat
实现类 它统计所有样本最终的平均值 每个样本都会累加每一次的记录值, 最后把所有样本数据叠加 / 总共记录的次数
每个样本都保存这个样本的最大值, 然后最后再对比所有样本值的最大值
每个样本累积每一次的记录值, 统计的时候 把所有样本的累计值 再累积返回
Rate
也是实现了MeasurableStat
接口的,说明 它也有 记录record
和 统计measure
的方法, 实际上这个类 是一个组合类 ,里面组合了SampledStat
和TimeUnit unit
,这不是很明显了么, SampledStat负责记录和统计, 得到的数据 跟时间TimeUnit
做一下处理就得出来速率了, 比如SampledStat
的实现类AVG
可以算出来 被统计的 评价值, 但是如果我们再除以 一个时间维度, 是不是就可以得出 平均速率 了
这个有效时间 的计算会影响着最终速率的结果
public long windowSize(MetricConfig config, long now) {
// 将过期的样本给重置掉
stat.purgeObsoleteSamples(config, now);
// 总共运行的时候 = 当前时间 - 最早的样本的开始时间
long totalElapsedTimeMs = now - stat.oldest(now).lastWindowMs;
// 总时间/单个创建时间 = 多少个完整的窗口时间
int numFullWindows = (int) (totalElapsedTimeMs / config.timeWindowMs());
int minFullWindows = config.samples() - 1;
// If the available windows are less than the minimum required, add the difference to the totalElapsedTime
if (numFullWindows < minFullWindows)
totalElapsedTimeMs += (minFullWindows - numFullWindows) * config.timeWindowMs();
return totalElapsedTimeMs;
}
这是Rate的有效时间的计算逻辑,当然Rate
还有一个子类是 SampleRate
这个子类,将 有效时间的计算逻辑改的更简单, 如果运行时间<一个样本窗口的时间 则他的运行时间就是单个样本的窗口时间, 否则就直接用这个运行的时间, 这个计算逻辑更简单
它跟Rate
的区别就是, 不考虑采样的时间是否足够多,我们用图来简单描述一下
SampleRate
Rate
这是一个
CompoundStat
的实现类, 说明它是一个复合统计, 可以统计很多指标在这里面 它包含速率指标和累积总指标的复合统计数据
底层实现的逻辑还是上面讲解过的
我们知道 在分区副本重分配过程中,有一个限流机制,就是指定某个限流值,副本同步过程不能超过这个阈值。 做限流,那么肯定首先就需要统计 副本同步 的流速;那么上面我们将了这么多,你应该很容易能够想到如果统计了吧? 流速 bytes/s , 统计一秒钟同步了多少流量, 那么我们可以把样本窗口设置为
1s
,然后多设置几个样本窗口求平均值。
接下来我们看看 Kafka是怎么统计的, 首先找到记录 Follower Fetch 副本流量的地方如下
ReplicaFetcherThread#processPartitionData
if(quota.isThrottled(topicPartition))
quota.record(records.sizeInBytes)
这里设置的
timeWindowMs
单个样本窗口时间= 1 s
numQuotaSamples
样本数 = 11
当然这些都是可以配置的
我们可以看到最终是使用了 SampleRate
来统计流量 !
上面我们起始是主要讲解了
Measurable
接口, 它的父类是MetricValueProvider<Double>
,它没有方法,只是定义,当还有一个子接口是Gauge
,它并不是上面那种采样的形式来统计数据, 它返回的是当前的值, 瞬时值 它提供的方法是value()
,Measurable
提供的是measure()
这个在kafka中使用场景很少,就不详细介绍了。
好了,这一篇我们主要讲解了一下 Kafka中的数据采集和统计机制
那么 接下来下一篇,我们来聊聊 Kafka的监控机制, 如何把这些采集
到的信息给保存起来并对外提供!!
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/144971.html原文链接:https://javaforall.cn