前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Linux PCI和PCIe总线

Linux PCI和PCIe总线

作者头像
全栈程序员站长
发布2022-09-13 08:22:13
6.1K0
发布2022-09-13 08:22:13
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

1 PCIe中断 – PCI/PCIe设备中断都是level触发,并且请求信号为低电平有效 – PCI总线一般只有INTA#到INTD#的4个中断引脚,所以PCI多功能设备的func一般不会超过4个,但是共享中断除外

2 IOMMU 2.1 ARM SMMU iommus = <&apps_smmu 0x300 0>:中间的数字0x300就是设备的Stream ID,执行DMA请求时,SMMU根据Stream ID找到设备在DDR中的STE(Stream Table Entry)。PCI的Stream ID等于BDF号。 SSID:Substream ID。ste.S1CDMax为0表示STE只支持一个CD(Context Descriptor),不需要使用SSID,如果S1CDMax不为0,那么支持的CD数目是2 ^ S1CDMax。当往STE中写入S1DSS = SSID0时就禁止了SSID功能。 TBU: Translation Buffer Unit for TLB TCU: Translation Control Unit for Page Table Walks

2.2 x86 IOMMU When a PCI device is assigned, KVM/QEMU call intel_iommu_page_mapping() to build VT-d DTE (Device Table Entry) to map the entire guest memory.

Kernel parameter intel_iommu=pt to set up pass through mode in context mapping entry. This disables DMAR in Linux kernel; but KVM still runs on VT-d and interrupt remapping still works.

In this mode, kernel uses swiotlb for DMA API functions but other VT-d functionalities are enabled for KVM. KVM always uses multi level translation page table in VT-d. By default, pass though mode is disabled in kernel.

PCIe PASID capability ID is equal to 0x1B (PCI_EXT_CAP_ID_PASID).

1)在虚拟化场景下,直通设备的中断是无法直接投递到Guest中的,而是由IOMMU截获中断,先将其中断映射到host的某个中断上,然后再重定向(由VMM写VMCS寄存器中的32 bits VM-entry interruption-information字段)到Guest内部。 2)IOMMU IRTE(Interrupt Remapping Table Entry,128bit)中的Destination ID字段指明中断要投递的CPU的APIC ID信息,vector字段指明中断号,VMM会为每个中断源分配一个IRTE,并且把guest分配的vector号填入到IRTE的vector域。 3)在进入guest执行前,kvm是关中断的,在VM-Exit完全恢复了host上下文后,才开中断。关中断是在vcpu_enter_guest函数中调用了local_irq_disable,开中断是在这个函数从kvm_x86_ops->run返回后(即VM-Exit后)调用local_irq_enable。 4)guest vcpu执行时,物理中断发生,导致VM-Exit,但是此时是关中断的,所以硬件不会响应中断,中断处于pending,在开中断后,硬件发现pending中断并开始响应,此时已经在host上下文中,IDT(Interrupt Descriptor Table)已经指向host的IDT,物理中断由host handler来处理。

3 Linux x86 PCIe调试 3.1 PCIe设备分类 – RC,BDF为00:00.0 – bridge就像hub,一般是个多功能的设备,传递数据需要仲裁,比较慢 – switch就像交换机,PCIe规范中引入,比较快 – endpoint,x86主板上内置设备的总线号一般为0,而外挂EP的总线号一般从1开始 Figure 3-1 Type0 Header

Linux PCI和PCIe总线
Linux PCI和PCIe总线

Figure 3-2 Type1 Header

Linux PCI和PCIe总线
Linux PCI和PCIe总线

3.2 基本概念 – PCIe QOS:TC(Traffic Class),TC的值从0到7,值越大,优先级越高,类似于支持AVB的EtherSwitch,因为PCIe设计之初主要是针对于音视频应用;一个TC对应一个VC buffer(Virtual Channel),如果只有一个VC buffer,那么设置的TC值无效 – PCIe超过256字节的配置空间需要找到基地址,在MMCFG中,偏移44字节(0x2c),长度为8个字节,而MCFG可以通过acpidump找到 – PCIe的domain在内核代码中叫segment,可以通过pci_domain_nr()获得 – dev号(也叫slot)和func号一般通过宏PCI_DEVFN()合并成一个字节 – 因为PCI规范允许单个系统拥有高达256个总线,所以总线编号是8位。但对于大型系统而言,这是不够的,所以,引入了域的概念,每个PCI域可以拥有最多256个总线,每个总线上可支持32个设备,所以设备号是5位,而每个设备上最多可有8种功能,所以功能号是3位 – I210一般连接在pcieport的Lane0

3.3 LTSSM状态的查询 – PCIESTS1 offset:328h – PCIe的LTSSM控制寄存器一般位于bridge的配置空间中(x86或者synopsys)或者RC的私有的寄存器(qcom) – 读取EP的上一级bridge的config space的0x328(假如EP直接连在RC的port上,读取RC私有的寄存器),就可以获得下一级EP的LTSSM状态。譬如读取bridge(00:13.0)的下一级EP状态:peeknpoke b r 0x00 13 0 328

CONFIG_PCI_MMCONFIG=y MMCONFIG: PCIe Memory-Mapped Config

QNX读取桥配置空间0x328的方法: pci-tool -D 0x5ada -vvvvv pci-tool -d 0:19:2 –read=CFG:0x328

3.4 LTSSM链路训练结果 通过访问PCIe桥的配置寄存器获得 Link Capabilities:配置空间0x4c Link Control and Link Status:配置空间0x50

3.5 Linux pcibios_init x86 BIOS专门提供了针对PCI总线的操作,这些操作里就包括了总线枚举的整个过程,Linux kernel中的宏CONFIG_PCI_BIOS。在系统加电以后自检时,就会完成对PCI总线的枚举,之后Linux对PCI配置空间的访问都是通过BIOS调用的形式进行,提供有这些功能和服务的BIOS就称之为PCI BIOS 。需要注意的是Linux x86_64是不采用PCI BIOS访问PCI配置空间的,而是内核实现了直接访问PCI配置空间的函数(CONFIG_PCI_DIRECT)。

pcibios_init()的第一个功能是在内存中找到BIOS程序的代码(参考函数pci_find_bios),然后将调用BIOS例程的读写PCI配置空间的代码封装成函数赋值给pci_ops。

pci_ops里面的函数指针都是用来读写PCI配置空间的,把要读写的值和设备号告诉这些函数,在这些函数中调用了BIOS例程,并把这些值当作参数传给BIOS例程,BIOS再根据设备号和要读写的值来进行操作。所以Linux x86驱动程序中pci_read_config_byte()最终调用的是pci_bios_read_config_byte()。

zcat /proc/config.gz | grep PCI

3.6 PCIe Reset – Cold Reset: PCI A15 pin RST – Warm Reset (LTSSM) – Hot Reset (LTSSM): PCIe Type1 Header config space offset 0x3E 16-bit Bridge Control register bit6 Secondary Bus Reset, bit6 can retrigger LTSSM Link Training from Rx.Detect – FLR (Function Level Reset): find Synopsys PCIe Capability ID 0x10, read 12 bytes from Capability ID byte, index 8 and 9 is Device Control Register, bit15 is FLR, Linux FLR path is /sys/bus/pci/devices/BDF/reset

3.7 x86 MIPI60 Blackhawk USB560v2

4 ARM PCIe 4.1 MSM RC drivers/pci/host/pci-msm.c qcom平台上每个RC属于一个domain(PCIe规范叫segment),并且每个RC只连接一个EP。 Figure 4-1 qcom RC拓扑图

Linux PCI和PCIe总线
Linux PCI和PCIe总线

4.2 MSM ep_pcie msm/ep_pcie ep_pcie_enumeration()

5 PCI用户空间编程 – libpci 5.1 Android libpci库 external/pciutils

5.2 libpci判断一个PCI设备是不是PCIe capability ID参考:include/uapi/linux/pci_regs.h 参数ptr是配置空间偏移地址0x34指向的一个字节(first capability list entry)。 static bool pci_is_pcie(struct pci_dev *pdev, unsigned char ptr) { unsigned int value; unsigned int next_ptr; unsigned int cap_id;

next_ptr = ptr; if (0 == ptr) return false;

do { value = pci_read_long(pdev, next_ptr); next_ptr = (value >> 8) & 0xff; cap_id = value & 0xff; /* PCI Express Capability Structure */ if (0x10 == cap_id) return true; } while (next_ptr);

return false; }

6 x86 GPIO PCH(Platform Controller Hub)上大部分设备可以通过PCIe或IO方式访问,但PCH上部分设备需要访问PCH的私有空间,这部分空间通过P2SB(Primary to SideBand)的SBREG_BAR寄存器映射到内存空间,这段空间被称为PCR(PCH Private Configuration Space Register)。每个设备对应一个PortID,PortID表示设备在PCR空间的偏移量,在加上寄存器偏移就可以获取寄存器的地址。

x86 GPIO寄存器位于PCH的私有空间。GPIO被分组,每组对应一个PCR的PortID。GPIO community和PortID的对应关系如下所示。 SouthWest: 0xC0 NorthWest: 0xC4 North: 0xC5 West: 0xC7

7 Windows PCIe工具软件 Mindshare的Arbor Teledyne LeCroy的TeleScan PE

8 Abbreviations ATU:Address Translation Unit BDF:Bus,Device,Function MEI:Intel Management Engine Interface;一个独立的子系统,使用ARC处理器,OS是Minix 3,固件整合到BIOS中,通过PCI桥片在x86端访问ARC的local端 overhead:开销,包头包尾等由协议层而不是应用层添加的字节,也就是说,一个PCIe包中除了payload之外的附加字节(ACK、CRC等)都叫overhead P2SB:x86 Primary to Sideband PCIe bifurcation:分叉 RC:Root Complex,执行存储器域地址到PCIe域地址的翻译,ATU被配置好后,CPU将要访问的地址发给ATU,ATU翻译后生成TLP包发给对应的Endpoint TLP:Transaction Layer Packet,TLP中包含BDF号或者要寻址的内存和IO地址及其范围 VMCS:Virtual Machine Control Structure

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/149028.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档