前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >线性代数的消元法_高斯消元法例题

线性代数的消元法_高斯消元法例题

作者头像
全栈程序员站长
发布2022-09-20 11:32:26
5260
发布2022-09-20 11:32:26
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

1. 消元的思想

针对下面的方程,我们无法直接得到方程的解。

\[\begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ 3&x\space+\space&2&y \space=\space 11 \end{alignedat}\]

但如果我们将第二个方程减去第一个方程的 3 倍,上面的方程组就变成了下面这样。

\[ \begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ &\space\space&8&y \space=\space 8 \end{alignedat}\]

这时候,我们就可以直接得到 \(y=1\),进而从第一个方程得到 \(x=3\)。

可以看到,消元之后,方程组变成了一个下三角(upper triangular)的形式,然后我们就可以用回带法(back substitution)来快速地解出方程组的解。

线性代数的消元法_高斯消元法例题
线性代数的消元法_高斯消元法例题

进行消元的那一行的第一个非零值称为主元(pivot),消元时候的乘数就等于待消项的系数除以主元,在上面的例子中,乘数 \(3 = 3 / 1\)。一般地,乘数可以表示为

\[l_{ij} = \frac{第\space i\space 行待消去项的系数}{第 \space j \space行的主元} \]

\[ \begin{alignedat}{2} 4&x \space- \space&8&y \space=\space 4 \\ 3&x\space+\space&2&y \space=\space 11 \end{alignedat}\]

如果我们改变了第一个方程,那么乘数就等于 \(3 / 4\)。消元之后,所有的主元都位于下三角的对角线上,并且主元不能是 0

\[ \begin{alignedat}{2} 4&x \space- \space&8&y \space=\space 4 \\ &\space\space&8&y \space=\space 8 \end{alignedat}\]

2. 消元的失效
  • 无解

\[\begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ 3&x\space-\space&6&y \space=\space 11 \end{alignedat} \quad{消元后}\quad \begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ &\space\space&0&y \space=\space 8 \end{alignedat}\]

这种情况下,我们遇到了 \(0y = 8\),说明原方程组无解。从行图像中,我们也可以看到,两条平行的直线无法相交于一点。而在列图像中,两个在同一方向上的向量不可能线性组合出不在这个方向上的向量。

线性代数的消元法_高斯消元法例题
线性代数的消元法_高斯消元法例题
  • 无穷解

\[\begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ 3&x\space-\space&6&y \space=\space 3 \end{alignedat} \quad{消元后}\quad \begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ &\space\space&0&y \space=\space 0 \end{alignedat}\]

这种情况下,我们遇到了 \(0y = 0\),任何的 \(y\) 值都满足要求,此时 \(y\) 是“自由”的,确定了 \(y\) 之后 \(x\) 则由第一个方程确定。

从行图像中,我们也可以看到,两条直线相同,因此整条直线都是交点。而在列图像中,左边的两个向量和右边的向量方向都相同,有无穷多个线性组合都可以产生右边的向量。

线性代数的消元法_高斯消元法例题
线性代数的消元法_高斯消元法例题

对于有 \(n\) 个方程的方程组,如果我们得不到 \(n\) 个主元,那么消元就会导致 \(0\not = 0,无解\) 或者 \(0=0,无穷解\) ,只有正好有 \(n\) 个主元的时候,方程组才有解,但我们可能需要进行方程的交换。

  • 需要行交换

\[\begin{alignedat}{2} 0&x \space+ \space&2&y \space=\space 4 \\ 3&x\space-\space&2&y \space=\space 5 \end{alignedat} \quad{消元后}\quad \begin{alignedat}{2} 3&x\space-\space&2&y \space=\space 5 \\ &\space\space&2&y \space=\space 4 \end{alignedat}\]

一开始,第一行的主元为 0,行交换后,我们得到了两个主元 3 和 2,然后,方程就有了正常的解。

3. 三个未知数

\[\begin{alignedat}{2} 2&x \space+\space&4&y \space-\space&2&z=\space 2 \\ 4&x \space+\space&9&y \space-\space&3&z=\space 8\\ -2&x \space-\space&3&y \space+\space&7&z=\space 10 \end{alignedat}\]

第一步,方程 2 减去 2 倍的方程 1,得到 \(y+z=4\)。 第二步,方程 3 减去 -1 倍的方程 1,得到 \(y+5z=12\)。 第一步,方程 3 减去 1 倍的方程 2,得到 \(4z=8\)。

\[\begin{alignedat}{2} \boldsymbol 2&x \space+\space&4&y \space-\space&2&z=\space 2 \\ & \space\space&\boldsymbol 1&y \space+\space&1&z=\space 8\\ & \space\space&& \space\space&\boldsymbol 4&z=\space 8 \end{alignedat}\]

三个主元分别为 2, 1, 4,然后我们就可以用回带法求出方程组的解。

4. 用矩阵的形式来消元

\[\begin{alignedat}{2} 2&x_1 \space+\space&4&x_2 \space-\space&2&x_3=\space 2 \\ 4&x_1\space+\space&9&x_2 \space-\space&3&x_3=\space 8\\ -2&x_1 \space-\space&3&x_2 \space+\space&7&x_3=\space 10 \end{alignedat} \leftrightarrow \begin{bmatrix} 2&4&-2 \\ 4&9&-3\\-2&-3&7\end{bmatrix} \begin{bmatrix} x_1 \\ x_2\\x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8\\10 \end{bmatrix}\]

对方程的两边同时进行一步消元,第 2 个方程减去第 1 个方程的 2 倍,我们可以得到:

\[\begin{bmatrix} 2&4&-2 \\ 0&1&1\\-2&-3&7\end{bmatrix} \begin{bmatrix} x_1 \\ x_2\\x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4\\10 \end{bmatrix}\]

相当于左右两边都乘以了一个矩阵 \(E_{21}\)

\[E_{21} = \begin{bmatrix} 1&0&0 \\ -2&1&0\\0&0&1\end{bmatrix} \]

\[E_{21} = \begin{bmatrix} 1&0&0 \\ -2&1&0\\0&0&1\end{bmatrix} * \begin{bmatrix} row1 \\ row2\\row3\end{bmatrix} = \begin{bmatrix} row1 \\ row2-2row1\\row3\end{bmatrix} \]

\(E_{21}\) 称为初等矩阵(elementary matrix)或者消元矩阵(elimination matrix),它可以很简单地从单位矩阵演化而来,\(E_{ij}\) 就是将单位矩阵 \((i, j)\) 位置的 0 换成消元过程的乘数 \(-l_{ij}\)。

\[I = \begin{bmatrix} 1&0&0 \\ 0&1&0\\0&0&1\end{bmatrix} \to E_{21} = \begin{bmatrix} 1&0&0 \\ \boxed{-2}&1&0\\0&0&1\end{bmatrix} \]

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/167500.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 消元的思想
  • 2. 消元的失效
  • 3. 三个未知数
  • 4. 用矩阵的形式来消元
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档