优势:
流程图:
Scrapy主要包括了以下组件: • 引擎(Scrapy): 用来处理整个系统的数据流,触发事务(框架核心); • 调度器(Scheduler): 用来接受引擎发过来的请求,压入队列中,并在引擎再次请求的时候返回。可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列,由它来决定下一个要抓取的网址是什么,同时去除重复的网址; • 下载器(Downloader): 用于下载网页内容,并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的); • 爬虫(Spiders): 爬虫是主要干活的,用于从特定的网页中提取自己需要的信息,即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面; • 项目管道(Pipeline): 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据; • 下载器中间件(Downloader Middlewares): 位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应; • 爬虫中间件(Spider Middlewares): 介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出; • 调度中间件(Scheduler Middewares): 介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
流程举例: 代码写好,程序开始运行…
只有当调度器中不存在任何request时,整个程序才会停止。(注:对于下载失败的URL,Scrapy也会重新下载。)
思考问题:
Scrapy 1.6.0
scrapy startproject mySpider
cd mySpider
tree
.
├── mySpider
│ ├── __init__.py
│ ├── items.py # 提取的数据信息
│ ├── middlewares.py # 中间键
│ ├── pipelines.py # 管道, 如何存储数据
│ ├── __pycache__
│ ├── settings.py # 设置信息
│ └── spiders # 爬虫(解析页面的信息)
│ ├── __init__.py
│ └── __pycache__
└── scrapy.cfg
scrapy genspider mooc "www.imooc.com"
cd mySpider/spiders/
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class CourseItem(scrapy.Item):
# Item对象是一个简单容器,保存爬取到的数据,类似于字典的操作;
# 实例化对象:
# course = CourseItem()
# define the fields for your item here like:
# 在此处定义出你想要获取的内容
# name = scrapy.Field()
# 课程标题
title = scrapy.Field()
# 课程的url地址
url = scrapy.Field()
# 课程图片的url地址
image_url = scrapy.Field()
# 课程的描述
introduction = scrapy.Field()
# 学习人数
student = scrapy.Field()
# -*- coding: utf-8 -*-
import scrapy
from mySpider.items import CourseItem
class MoocSpider(scrapy.Spider):
# name:用于区别爬虫,必须是唯一的;
name = 'mooc'
# 允许爬取的域名;其他网站的页面直接跳过;
allowed_domains = ['www.imooc.com', 'img3.mukewang.com']
# 爬虫开启时第一个放入调度器的url地址;
start_urls = ['http://www.imooc.com/course/list']
# 被调用时,每个初始url完成下载后,返回一个响应对象;
# 负责将响应的数据分析,提取需要的数据items以及生成下一步需要处理的url地址请求;
def parse(self, response):
# 用来检测代码是否达到指定位置,以及用来调试并解析页面信息;
# from scrapy.shell import inspect_response
# inspect_response(response, self)
# 1). 实例化对象, CourseItem
course = CourseItem()
# 分析响应的内容
# scrapy分析页面使用的是xpath语法
# 2). 获取每个课程的信息:<div class="course-card-container">
courseDetails = response.xpath('//div[@class="course-card-container"]')
for courseDetail in courseDetails:
# 课程的名称:
# "htmlxxxx"
# 爬取新的网站, Scrapy里面进行调试(parse命令logging)
course['title'] = courseDetail.xpath('.//h3[@class="course-card-name"]/text()').extract()[0]
# 学习人数
course['student'] = courseDetail.xpath('.//span/text()').extract()[1]
# 课程描述:
course['introduction'] = courseDetail.xpath(".//p[@class='course-card-desc']/text()").extract()[0]
# 课程链接, h获取/learn/9 ====》 http://www.imooc.com/learn/9
course['url'] = "http://www.imooc.com" + courseDetail.xpath('.//a/@href').extract()[0]
# 课程的图片url:
course['image_url'] = 'http:' + courseDetail.xpath('.//img/@src').extract()[0]
yield course
# url跟进, 获取下一页是否有链接;href
url = response.xpath('.//a[contains(text(), "下一页")]/@href')[0].extract()
if url:
# 构建新的url
page = "http://www.imooc.com" + url
yield scrapy.Request(page, callback=self.parse)
# Obey robots.txt rules
# ROBOTSTXT_OBEY = True
ROBOTSTXT_OBEY = False
MOOCFilename = "mooc.txt"
ITEM_PIPELINES = {
# 管道的位置: 优先级, 0~1000, 数字越小, 优先级越高;
'mySpider.pipelines.MyspiderPipeline': 300,
'mySpider.pipelines.CsvPipeline': 400,
'mySpider.pipelines.MysqlPipeline': 500,
'mySpider.pipelines.ImagePipeline': 200,
}
IMAGES_STORE = '/root/PycharmProjects/day29/mySpider/img'
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
import json
from mySpider.settings import MOOCFilename
from scrapy.pipelines.images import ImagesPipeline
class MyspiderPipeline(object):
"""将爬取的信息保存为Json格式"""
def __init__(self):
self.f = open(MOOCFilename, 'w')
def process_item(self, item, spider):
# 默认传过来的item是json格式
import json
# 读取item中的数据, 并转成json格式;
line = json.dumps(dict(item), ensure_ascii=False, indent=4)
self.f.write(line + '\n')
# 一定要加, 返回给调度为器;
return item
def open_spider(self, spider):
"""开启爬虫时执行的函数"""
pass
def close_spider(self, spider):
"""当爬虫全部爬取结束的时候执行的函数"""
self.f.close()
class CsvPipeline(object):
"""将爬取的信息保存为csv格式"""
def __init__(self):
self.f = open('mooc.csv', 'w')
def process_item(self, item, spider):
# xxxx:xxxxx:xxxx
item = dict(item)
self.f.write("{0}:{1}:{1}\n".format(item['title'], item['student'], item['url']))
# 一定要加, 返回给调度为器;
return item
def open_spider(self, spider):
"""开启爬虫时执行的函数"""
pass
def close_spider(self, spider):
"""当爬虫全部爬取结束的时候执行的函数"""
self.f.close()
import pymysql
class MysqlPipeline(object):
"""
将爬取的信息保存到数据库中
1. 创建mooc数据库
"""
def __init__(self):
super(MysqlPipeline, self).__init__()
self.conn = pymysql.connect(
host='localhost',
user='root',
password='redhat',
db='Mooc',
charset='utf8',
)
self.cursor = self.conn.cursor()
def process_item(self, item, spider):
# xxxx:xxxxx:xxxx
# item时一个对象,
item = dict(item)
info = (item['title'], item['url'], item['image_url'], item['introduction'], item['student'])
insert_sqli = "insert into moocinfo values('%s', '%s', '%s', '%s', '%s'); " %(info)
# open('mooc.log', 'w').write(insert_sqli)
# # 用来检测代码是否达到指定位置, 并用来调试并解析页面信息;
self.cursor.execute(insert_sqli)
self.conn.commit()
return item
def open_spider(self, spider):
"""开启爬虫时执行的函数"""
create_sqli = "create table if not exists moocinfo (title varchar(50), url varchar(200), image_url varchar(200), introduction varchar(500), student int)"
self.cursor.execute(create_sqli)
def close_spider(self, spider):
"""当爬虫全部爬取结束的时候执行的函数"""
self.cursor.close()
self.conn.close()
import scrapy
# scrapy框架里面,
class ImagePipeline(ImagesPipeline):
def get_media_requests(self, item, info):
# 返回一个request请求, 包含图片的url地址
yield scrapy.Request(item['image_url'])
# 当下载请求完成后执行的函数/方法
def item_completed(self, results, item, info):
# open('mooc.log', 'w').write(results)
# 获取下载的地址
image_path = [x['path'] for ok,x in results if ok]
if not image_path:
raise Exception("不包含图片")
else:
return item
scrapy crawl mooc
# 此处scrapy crawl + 爬虫名
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/179733.html原文链接:https://javaforall.cn