前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >GloVe模型_nerlove模型

GloVe模型_nerlove模型

作者头像
全栈程序员站长
发布2022-09-29 11:51:08
5390
发布2022-09-29 11:51:08
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

文章目录

系列目录(系列更新中)

1.概述

  • 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息。
  • 输入:语料库
  • 输出:词向量
  • 方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量。 开始 -> 统计共现矩阵 -> 训练词向量 -> 结束

2.统计共现矩阵

设共现矩阵为X,其元素为 X i , j X_{i,j} Xi,j​。 X i , j X_{i,j} Xi,j​的意义为:在整个语料库中,单词i和单词j共同出现在一个窗口中的次数。 举个栗子: 设有语料库:

代码语言:javascript
复制
i love you but you love him i am sad

这个小小的语料库只有1个句子,涉及到7个单词:i、love、you、but、him、am、sad。 如果我们采用一个窗口宽度为5(左右长度都为2)的统计窗口,那么就有以下窗口内容:

窗口标号

中心词

窗口内容

0

i

i love you

1

love

i love you but

2

you

i love you but you

3

but

love you but you love

4

you

you but you love him

5

love

but you love him i

6

him

you love him i am

7

i

love him i am sad

8

am

him i am sad

9

sad

i am sad

窗口0、1长度小于5是因为中心词左侧内容少于2个,同理窗口8、9长度也小于5。 以窗口5为例说明如何构造共现矩阵: 中心词为love,语境词为but、you、him、i;则执行:

X l o v e , b u t + = 1 X_{love,but}+=1 Xlove,but​+=1 X l o v e , y o u + = 1 X_{love,you}+=1 Xlove,you​+=1 X l o v e , h i m + = 1 X_{love,him}+=1 Xlove,him​+=1 X l o v e , i + = 1 X_{love,i}+=1 Xlove,i​+=1

使用窗口将整个语料库遍历一遍,即可得到共现矩阵X。

3.使用GloVe模型训练词向量

3.1.模型公式

先看模型,代价函数长这个样子:

J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=\sum_{i,j}^Nf(X_{i,j})(v_{i}^Tv_{j}+b_{i}+b_{j}-log(X_{i,j}))^2 J=i,j∑N​f(Xi,j​)(viT​vj​+bi​+bj​−log(Xi,j​))2

v i v_{i} vi​, v j v_{j} vj​是单词i和单词j的词向量, b i b_{i} bi​, b j b_{j} bj​是两个标量(作者定义的偏差项),f是权重函数(具体函数公式及功能下一节介绍),N是词汇表的大小(共现矩阵维度为N*N)。 可以看到,GloVe模型没有使用神经网络的方法。

3.2.模型怎么来的

那么作者为什么这么构造模型呢?首先定义几个符号:

X i = ∑ j = 1 N X i , j X_{i}=\sum_{j=1}^NX_{i,j} Xi​=j=1∑N​Xi,j​

其实就是矩阵单词i那一行的和; P i , k = X i , k X i P_{i,k}=\dfrac{X_{i,k}}{X_{i}} Pi,k​=Xi​Xi,k​​

条件概率,表示单词k出现在单词i语境中的概率; r a t i o i , j , k = P i , k P j , k ratio_{i,j,k}=\dfrac{P_{i,k}}{P_{j,k}} ratioi,j,k​=Pj,k​Pi,k​​

两个条件概率的比率。 作者的灵感是这样的: 作者发现, r a t i o i , j , k ratio_{i,j,k} ratioi,j,k​这个指标是有规律的,规律统计在下表:

r a t i o i , j , k ratio_{i,j,k} ratioi,j,k​的值

单词j,k相关

单词j,k不相关

单词i,k相关

趋近1

很大

单词i,k不相关

很小

趋近1

很简单的规律,但是有用。 思想:假设我们已经得到了词向量,如果我们用词向量 v i v_{i} vi​、 v j v_{j} vj​、 v k v_{k} vk​通过某种函数计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k​,能够同样得到这样的规律的话,就意味着我们词向量与共现矩阵具有很好的一致性,也就说明我们的词向量中蕴含了共现矩阵中所蕴含的信息。 设用词向量 v i v_{i} vi​、 v j v_{j} vj​、 v k v_{k} vk​计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k​的函数为 g ( v i , v j , v k ) g(v_{i},v_{j},v_{k}) g(vi​,vj​,vk​)(我们先不去管具体的函数形式),那么应该有:

P i , k P j , k = r a t i o i , j , k = g ( v i , v j , v k ) \dfrac{P_{i,k}}{P_{j,k}}=ratio_{i,j,k}=g(v_{i},v_{j},v_{k}) Pj,k​Pi,k​​=ratioi,j,k​=g(vi​,vj​,vk​)

即: P i , k P j , k = g ( v i , v j , v k ) \dfrac{P_{i,k}}{P_{j,k}}=g(v_{i},v_{j},v_{k}) Pj,k​Pi,k​​=g(vi​,vj​,vk​)

即二者应该尽可能地接近; 很容易想到用二者的差方来作为代价函数: J = ∑ i , j , k N ( P i , k P j , k − g ( v i , v j , v k ) ) 2 J=\sum_{i,j,k}^N(\dfrac{P_{i,k}}{P_{j,k}}-g(v_{i},v_{j},v_{k}))^2 J=i,j,k∑N​(Pj,k​Pi,k​​−g(vi​,vj​,vk​))2

但是仔细一看,模型中包含3个单词,这就意味着要在NNN的复杂度上进行计算,太复杂了,最好能再简单点。 现在我们来仔细思考 g ( v i , v j , v k ) g(v_{i},v_{j},v_{k}) g(vi​,vj​,vk​),或许它能帮上忙; 作者的脑洞是这样的:

  1. 要考虑单词i和单词j之间的关系,那 g ( v i , v j , v k ) g(v_{i},v_{j},v_{k}) g(vi​,vj​,vk​)中大概要有这么一项吧: v i − v j v_{i}-v_{j} vi​−vj​;嗯,合理,在线性空间中考察两个向量的相似性,不失线性地考察,那么 v i − v j v_{i}-v_{j} vi​−vj​大概是个合理的选择;
  2. r a t i o i , j , k ratio_{i,j,k} ratioi,j,k​是个标量,那么 g ( v i , v j , v k ) g(v_{i},v_{j},v_{k}) g(vi​,vj​,vk​)最后应该是个标量啊,虽然其输入都是向量,那內积应该是合理的选择,于是应该有这么一项吧: ( v i − v j ) T v k (v_{i}-v_{j})^Tv_{k} (vi​−vj​)Tvk​。
  3. 然后作者又往 ( v i − v j ) T v k (v_{i}-v_{j})^Tv_{k} (vi​−vj​)Tvk​的外面套了一层指数运算exp(),得到最终的 g ( v i , v j , v k ) = e x p ( ( v i − v j ) T v k ) g(v_{i},v_{j},v_{k})=exp((v_{i}-v_{j})^Tv_{k}) g(vi​,vj​,vk​)=exp((vi​−vj​)Tvk​); 最关键的第3步,为什么套了一层exp()? 套上之后,我们的目标是让以下公式尽可能地成立: P i , k P j , k = g ( v i , v j , v k ) \dfrac{P_{i,k}}{P_{j,k}}=g(v_{i},v_{j},v_{k}) Pj,k​Pi,k​​=g(vi​,vj​,vk​)

即: P i , k P j , k = e x p ( ( v i − v j ) T v k ) \dfrac{P_{i,k}}{P_{j,k}}=exp((v_{i}-v_{j})^Tv_{k}) Pj,k​Pi,k​​=exp((vi​−vj​)Tvk​)

即: P i , k P j , k = e x p ( v i T v k − v j T v k ) \dfrac{P_{i,k}}{P_{j,k}}=exp(v_{i}^Tv_{k}-v_{j}^Tv_{k}) Pj,k​Pi,k​​=exp(viT​vk​−vjT​vk​)

即: P i , k P j , k = e x p ( v i T v k ) e x p ( v j T v k ) \dfrac{P_{i,k}}{P_{j,k}}=\dfrac{exp(v_{i}^Tv_{k})}{exp(v_{j}^Tv_{k})} Pj,k​Pi,k​​=exp(vjT​vk​)exp(viT​vk​)​

然后就发现找到简化方法了:只需要让上式分子对应相等,分母对应相等,即: P i , k = e x p ( v i T v k ) {P_{i,k}}={exp(v_{i}^Tv_{k})} Pi,k​=exp(viT​vk​)并且 P j , k = e x p ( v j T v k ) {P_{j,k}}={exp(v_{j}^Tv_{k})} Pj,k​=exp(vjT​vk​)

然而分子分母形式相同,就可以把两者统一考虑了,即: P i , j = e x p ( v i T v j ) {P_{i,j}}={exp(v_{i}^Tv_{j})} Pi,j​=exp(viT​vj​)

本来我们追求: P i , k P j , k = g ( v i , v j , v k ) \dfrac{P_{i,k}}{P_{j,k}}=g(v_{i},v_{j},v_{k}) Pj,k​Pi,k​​=g(vi​,vj​,vk​)

现在只需要追求: P i , j = e x p ( v i T v j ) {P_{i,j}}={exp(v_{i}^Tv_{j})} Pi,j​=exp(viT​vj​)

两边取个对数: l o g ( P i , j ) = v i T v j log(P_{i,j})=v_{i}^Tv_{j} log(Pi,j​)=viT​vj​

那么代价函数就可以简化为: J = ∑ i , j N ( l o g ( P i , j ) − v i T v j ) 2 J=\sum_{i,j}^N(log(P_{i,j})-v_{i}^Tv_{j})^2 J=i,j∑N​(log(Pi,j​)−viT​vj​)2

现在只需要在NN的复杂度上进行计算,而不是NN*N,现在关于为什么第3步中,外面套一层exp()就清楚了,正是因为套了一层exp(),才使得差形式变成商形式,进而等式两边分子分母对应相等,进而简化模型。 然而,出了点问题。 仔细看这两个式子: l o g ( P i , j ) = v i T v j 和 l o g ( P j , i ) = v j T v i log(P_{i,j})=v_{i}^Tv_{j}和log(P_{j,i})=v_{j}^Tv_{i} log(Pi,j​)=viT​vj​和log(Pj,i​)=vjT​vi​

l o g ( P i , j ) log(P_{i,j}) log(Pi,j​)不等于 l o g ( P j , i ) log(P_{j,i}) log(Pj,i​)但是 v i T v j v_{i}^Tv_{j} viT​vj​等于 v j T v i v_{j}^Tv_{i} vjT​vi​;即等式左侧不具有对称性,但是右侧具有对称性。 数学上出了问题。 补救一下好了。 现将代价函数中的条件概率展开: l o g ( P i , j ) = v i T v j log(P_{i,j})=v_{i}^Tv_{j} log(Pi,j​)=viT​vj​

即为: l o g ( X i , j ) − l o g ( X i ) = v i T v j log(X_{i,j})-log(X_{i})=v_{i}^Tv_{j} log(Xi,j​)−log(Xi​)=viT​vj​

将其变为: l o g ( X i , j ) = v i T v j + b i + b j log(X_{i,j})=v_{i}^Tv_{j}+b_{i}+b_{j} log(Xi,j​)=viT​vj​+bi​+bj​

即添了一个偏差项 b j b_{j} bj​,并将 l o g ( X i ) log(X_{i}) log(Xi​)吸收到偏差项 b i b_{i} bi​中。 于是代价函数就变成了: J = ∑ i , j N ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=\sum_{i,j}^N(v_{i}^Tv_{j}+b_{i}+b_{j}-log(X_{i,j}))^2 J=i,j∑N​(viT​vj​+bi​+bj​−log(Xi,j​))2

然后基于出现频率越高的词对儿权重应该越大的原则,在代价函数中添加权重项,于是代价函数进一步完善: J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=\sum_{i,j}^Nf(X_{i,j})(v_{i}^Tv_{j}+b_{i}+b_{j}-log(X_{i,j}))^2 J=i,j∑N​f(Xi,j​)(viT​vj​+bi​+bj​−log(Xi,j​))2

具体权重函数应该是怎么样的呢? 首先应该是非减的,其次当词频过高时,权重不应过分增大,作者通过实验确定权重函数为: f ( x ) = { ( x / x m a x ) 0.75 , if x < x m a x 1 , if x > = x m a x f(x) = \begin{cases} (x/xmax)^{0.75}, & \text{if x >= xmax

到此,整个模型就介绍完了。

3.3.Glove和skip-gram、CBOW模型对比

Cbow/Skip-Gram 是一个local context window的方法,比如使用NS来训练,缺乏了整体的词和词的关系,负样本采用sample的方式会缺失词的关系信息。 另外,直接训练Skip-Gram类型的算法,很容易使得高曝光词汇得到过多的权重

Global Vector融合了矩阵分解Latent Semantic Analysis (LSA)的全局统计信息和local context window优势。融入全局的先验统计信息,可以加快模型的训练速度,又可以控制词的相对权重。

我的理解是skip-gram、CBOW每次都是用一个窗口中的信息更新出词向量,但是Glove则是用了全局的信息(共线矩阵),也就是多个窗口进行更新

4.实战教程

GloVe 教程之实战入门+python gensim 词向量

参考链接: 理解GloVe模型

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/193506.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年9月15日 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 文章目录
  • 系列目录(系列更新中)
  • 1.概述
  • 2.统计共现矩阵
  • 3.使用GloVe模型训练词向量
    • 3.1.模型公式
      • 3.2.模型怎么来的
        • 3.3.Glove和skip-gram、CBOW模型对比
        • 4.实战教程
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档