前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >大学生数学竞赛非数专题四(4)

大学生数学竞赛非数专题四(4)

作者头像
用户9628320
发布2022-11-14 17:10:34
3100
发布2022-11-14 17:10:34
举报

专题四 多元函数积分学 (4)

4.4 与重积分有关的不等式证明问题


4.9 (清华大学1985年竞赛题) 设函数

f(x)

[0,1]

上连续且单调递减,又

f(x) > 0

,求证:

\frac{\displaystyle\int_{0}^{1}xf^{2}(x)dx}{\displaystyle \int_{0}^{1}xf(x)dx}\leq \frac{\displaystyle\int_{0}^{1}f^{2}(x)dx}{\displaystyle \int_{0}^{1}f(x)dx}

解析】:由题意知,

f(x)

单调递减,所以

(f(x)-f(y))(x-y) \leq 0

,所以两边乘以

f(x)f(y)

,即

f(x)f(y)(f(x)-f(y))(x-y) \leq 0

;展开得

xf^{2}(x)f(y)+yf^{2}(y)f(x) \leq xf(x)f^{2}(y)+yf(y)f^{2}(x)

构造二重积分

D:\{(x,y)|0 \leq x \leq 1,0 \leq y \leq 1\}

,对上面不等式进行二重积分,则

\begin{align*}\displaystyle \underset{D}{\iint}[xf^{2}(x)f(y)+yf^{2}(y)f(x)]dxdy&=\int_{0}^{1}xf^{2}(x)dx\int_{0}^{1}f(y)dy+\int_{0}^{1}yf^{2}(y)dy\int_{0}^{1}f(x)dx\\&=2\int_{0}^{1}xf^{2}(x)dx\int_{0}^{1}f(x)dx\end{align*}
\begin{align*}\displaystyle \underset{D}{\iint}[xf(x)f^{2}(y)+yf(y)f^{2}(x)]dxdy&=\int_{0}^{1}xf(x)dx\int_{0}^{1}f^{2}(y)dy+\int_{0}^{1}yf(y)dy\int_{0}^{1}f^{2}(x)dx\\&=2\int_{0}^{1}xf(x)dx\int_{0}^{1}f^{2}(x)dx\end{align*}

所以

\begin{align*}\displaystyle \int_{0}^{1}xf^{2}(x)dx\int_{0}^{1}f(x)dx \leq \int_{0}^{1}xf(x)dx\int_{0}^{1}f^{2}(x)dx\end{align*}

\frac{\displaystyle\int_{0}^{1}xf^{2}(x)dx}{\displaystyle \int_{0}^{1}xf(x)dx}\leq \frac{\displaystyle\int_{0}^{1}f^{2}(x)dx}{\displaystyle \int_{0}^{1}f(x)dx}

.


4.10 (广东省1991年竞赛题) 设

D

域是

x^2+y^2 \leq 1

,试着证明不等式

\dfrac{61}{165}\pi \leq \displaystyle \underset{D}{\iint}\sin\sqrt{(x^2+y^2)^3}dxdy \leq \dfrac{2}{5}\pi

解析】:先利用极坐标,有

\displaystyle \underset{D}{\iint}\sin\sqrt{(x^2+y^2)^3}dxdy =\int_{0}^{2\pi}d\theta\int_{0}^{1}\rho\sin(\rho^3)d\rho=2\pi\rho\sin(\rho^3)d\rho

x \geq 0

时,

\sin x \leq x

;又泰勒公式展开可知,

\sin x \geq x-\dfrac{1}{6}x^3

,所以

\sin(\rho^3)\leq \rho^3

\sin(\rho^3) \geq \rho^3-\dfrac{1}{6}\rho^9

,记原二重积分为

I

,即

\displaystyle I \leq 2\pi\int_{0}^{1}\rho^4d\rho =\dfrac{2}{5}\pi,I \geq 2\pi\int_{0}^{1}\rho(\rho^3-\frac{1}{6}\rho^9)d\rho=\frac{61}{165}\pi

故原不等式得证。


4.12 (江苏省2004年竞赛题) 已知

\Omega

x^2+y^2+z^2 \leq 1

,求证:

\displaystyle \frac{3}{2}\pi < \underset{\Omega}{\iiint}\sqrt[3]{x+2y-2z+5}dV < 3\pi

解析】:令

f=x+2y-2z+5

,当

f

处于

x^2+y^2+z^2 < 1

的内部时,

f^{'}_{x}=1 \neq 0

f^{'}_{y}=2 \neq 0

f^{'}_{z}=-2\neq 0

,无驻点,即

f

在内部无极大值和极小值。当处于边界

x^2+y^2+z^2=1

时,利用拉格朗日乘数法令

F=x+2y-2z+5\lambda(x^2+y^2+z^2-1)

\begin{matrix}&F^{'}(x)=1+2\lambda x=0,F^{'}(y)=2+2\lambda y=0\\&F^{'}(z)=-2+2\lambda z=0,F^{'}(\lambda)=x^2+y^2+z^2-1=0\end{matrix}

解得极值点为

(\dfrac{1}{3},\dfrac{2}{3},-\dfrac{2}{3})

(-\dfrac{1}{3},-\dfrac{2}{3},\dfrac{2}{3})

,带入,求得

F_{\min}=2

F_{\max}=8

,所以

\displaystyle\underset{\Omega}{\iiint}\sqrt[3]{x+2y-2z+5}dV >\sqrt[3]{2}\underset{\Omega}{\iiint}dV=\dfrac{4\sqrt[3]{2}}{3}\pi > \frac{3}{2}\pi
\displaystyle\underset{\Omega}{\iiint}\sqrt[3]{x+2y-2z+5}dV < 2\underset{\Omega}{\iiint}dV=\dfrac{8}{3}\pi < 3\pi

所以得证。


4.13 (全国大学生2014年决赛题) 设

\displaystyle I=\underset{D}{\iint} f(x,y)dxdy

,其中

D:\{(x,y)|0\leq x\leq 1,0\leq y\leq 1\}

,函数

f(x,y)

D

上有连续的二阶偏导数。若多任意的

x,y

均有

f(0,y)=f(x,0)=0

,且有

\dfrac{\partial ^2 f}{\partial x\partial y} \leq A

,证明

I \leq \dfrac{A}{4}

解析】:先将二重积分化为二次积分,再利用分部积分有

\begin{align*}I&=\int_{0}^{1}dx\int_{0}^{1}f(x,y)dy=\int_{0}^{1}dx\int_{0}^{1}f(x,y)d(y-1)\\&=\int_{0}^{1}dx\left((y-1)f(x,y)\bigg|_{y=0}^{y=1}-\int_{0}^{1}(y-1)f^{'}_{y}(x,y)dy\right)\\&=-\int_{0}^{1}dx\int_{0}^{1}(y-1)f^{'}_{y}(x,y)dy=-\int_{0}^{1}dy\int_{0}^{1}(y-1)f^{'}_{y}(x,y)dx\\&=-\int_{0}^{1}dy\int_{0}^{1}(y-1)f^{'}_{y}(x,y)d(x-1)\\&=-\int_{0}^{1}[(x-1)(y-1)f^{'}_{y}(x,y)\bigg|_{x=0}^{x=1}-\int_{0}^{1}(x-1)(y-1)f^{''}_{xy}(x,y)dx]\\&=\int_{0}^{1}dx\int_{0}^{1}f^{''}_{xy}(x,y)dx=\underset{D}{\iint}(x-1)(y-1)f^{''}_{xy}(x,y)dxdy\end{align*}
\begin{align*}\displaystyle \underset{D}{\iint}(x-1)(y-1)f^{''}_{xy}(x,y)dxdy& \leq A\underset{D}{\iint}(x-1)(y-1)dxdy\\&=A\times \frac{1}{2}(x-1)^2\Big|_{0}^{1}\cdot\frac{1}{2}(y-1)^2\Big|_{0}^{1}=\frac{A}{4}\end{align*}

故得证。


4.14 ( 广东省1991年竞赛题) 设二元函数

f(x,y)

在区域

D:\{0 \leq x \leq 1,0 \leq y\leq 1\}

上具有连续的四阶偏导数,并且

f(x,y)

在区域

D

的边界上恒为

0

,且

\left|\dfrac{\partial^4 f}{\partial x^2 \partial y^2}\right| \leq 3

,试着证明:

\displaystyle\left|\underset{D}{\iint}f(x,y)dxdy\right| \leq \frac{1}{48}

解析】:可以展开上述的二重积分,利用分部积分法,有

\begin{align*}\displaystyle \underset{D}{\iint}xy(x-1)(y-1)\frac{\partial^4 f}{\partial x^2 \partial y^2}dxdy&=\int_{0}^{1}x(1-x)dx\int_{0}^{1}y(y-1)\frac{\partial^4 f}{\partial x^2 \partial y^2}dy \\&=\int_{0}^{1}x(1-x)\left[y(1-y)\frac{\partial^3 f}{\partial x^2 \partial y}\Bigg|_{0}^{1}+\int_{0}^{1}(2y-1)\frac{\partial^3 f}{\partial x^2 \partial y}dy\right]dx\\&=\int_{0}^{1}x(1-x)dx\int_{0}^{1}(2y-1)\frac{\partial^3 f}{\partial x^2\partial y}dy\\&=\int_{0}^{1}x(1-x)\left[(2y-1)\frac{\partial^2 f}{\partial x^2}\Bigg|_{0}^{1}-2\int_{0}^{1}\frac{\partial^2 f}{\partial x^2}dy\right]dx\\&=\int_{0}^{1}x(1-x)\left[(2y-1)\frac{\partial^2 f(x,1)}{\partial x^2}+\frac{\partial^2 f(x,0)}{\partial x^2}\right]dx-2\int_{0}^{1}\left[\int_{0}^{1}x(1-x)\frac{\partial^2 f}{\partial x^2}dx\right]dy\\&=x(1-x)\left[f^{'}_{x}(x,1)+f^{'}_{x}(x,0)\right]\bigg|_{0}^{1}+\int_{0}^{1}(2x-1)\left[f^{'}_{x}(x,1)+f_{x}^{'}(x,0)\right]dx\\&-2\int_{0}^{1}\left[x(1-x)f^{'}_{x}(x,y)\bigg|_{0}^{1}+\int_{0}^{1}(2x-1)f^{'}_{x}(x,y)dx\right]dy\\&=(2x-1)\left[f(x,1)+f(x,0)]\bigg|_{0}^{1}-2\int_{0}^{1}[f(x,1)+f(x,0)\right]dx-2\int_{0}^{1}\left[(2x-1)f(x,y)\bigg|_{0}^{1}-2\int_{0}^{1}f(x,y)dx\right]dy\\&=4\underset{D}{\iint}f(x,y)d\sigma\end{align*}

所以

\begin{align*}\displaystyle \left|\underset{D}{\iint}f(x,y)d\sigma\right|&=\frac{1}{4}\left|\underset{D}{\iint}xy(1-x)(1-y)\dfrac{\partial^4 f}{\partial x^2 \partial y^2}d\sigma\right|\\&\leq\frac{3}{4}\underset{D}{\iint}xy(1-x)(1-y)d\sigma\\&=\frac{3}{4}(\frac{x^2}{2}-\frac{x^3}{3})\bigg|_{0}^{1}\times(\frac{y^2}{2}-\frac{y^3}{3})\bigg|_{0}^{1}\\&=\frac{3}{4}\times(\frac{1}{6})^2=\frac{1}{48}\end{align*}

故得证。


作者:小熊


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-12-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 灰灰的数学与机械世界 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 专题四 多元函数积分学 (4)
    • 4.4 与重积分有关的不等式证明问题
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档