前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据结构2——linuxC(双向循环链表+内核链表)

数据结构2——linuxC(双向循环链表+内核链表)

作者头像
天天Lotay
发布2022-12-02 14:38:39
1.2K0
发布2022-12-02 14:38:39
举报
文章被收录于专栏:嵌入式音视频

一.双向循环链表

代码语言:javascript
复制
#include <stdio.h>
#include <stdlib.h>

// 双向循环链表数据节点
typedef struct node
{
	int data;	// 数据域
	struct node *prev, *next;	// 指针域(2个指针,前后指针)
}node;

// 添加新数据(头插法)
void link_list_add(int new_data, node *head);
// 添加新数据(尾插法)
void link_list_add_tail(int new_data, node *head);
// 初始化一个节点
node *link_list_init(void);
// 链表遍历
void link_list_show(node *head);
// 链表遍历(前序遍历)
void link_list_show_prev(node *head);
// 删除指定节点
void link_list_del(int del_data, node *head);

int main()
{
	// 1.初始化一条空链表
	node *head = link_list_init();

	// 2.数据操作(正数新增,负数删除)
	int cmd;
	while(1)
	{
		printf("Pls Input: ");
		scanf("%d", &cmd); while(getchar()!='\n');
		if(cmd > 0)
			// link_list_add(cmd, head);	// 头插
			link_list_add_tail(cmd, head);	// 尾插
		else if(cmd < 0)
			link_list_del(-cmd, head);
		
		printf("next: ");
		link_list_show(head);	//后序遍历
		printf("prev: ");
		link_list_show_prev(head);	//前序遍历
	}

	return 0;
}

// 删除指定节点
void link_list_del(int del_data, node *head)
{
	// 0.判断是否为空链表
	if(head->next == head)
	{
		printf("ERROR: Empty!\n");
		return;
	}

	// 1.遍历链表,逐个对比找出欲删除节点pos
	node *pos;
	for(pos=head->next; pos!=head; pos=pos->next)
		if(pos->data == del_data)
			break;
	if(pos == head)
	{
		printf("Not Found!\n");
		return;
	}

	// 2.操作pos的前后节点,使他们联系起来。
	// 前节点->next = 后节点;
	// 后节点->prev = 前节点;
	pos->prev->next = pos->next;
	pos->next->prev = pos->prev;

	// 3.free释放pos
	free(pos);
}

// 链表遍历(后序遍历)
void link_list_show(node *head)
{
	node *pos;
	for(pos=head->next; pos!=head; pos=pos->next)
		printf("%d ", pos->data);
	printf("\n");
}

// 链表遍历(前序遍历)
void link_list_show_prev(node *head)
{
	node *pos;
	for(pos=head->prev; pos!=head; pos=pos->prev)
		printf("%d ", pos->data);
	printf("\n");
}


// 添加新数据(尾插法)
void link_list_add_tail(int new_data, node *head)
{
	// 直接使用尾插也可以。
	// link_list_add(new_data, head->prev);

	// 1.新节点分配堆空间,并把新数据放入
	node *new = link_list_init();
	new->data = new_data;

	// 2.操作节点
		// 2.1 操作新节点(顺序无所谓)
	// 新节点->next = 头节点;
	// 新节点->prev = 头节点->prev;
	new->next = head;
	new->prev = head->prev;
		// 2.2 操作前后节点(顺序不能反)
	// 前节点->next = 新节点;
	// 后节点->prev = 新节点;
	head->prev->next = new;
	head->prev = new;
}

// 添加新数据(头插法)
void link_list_add(int new_data, node *head)
{
	// 1.新节点分配堆空间,并把新数据放入
	node *new = link_list_init();
	new->data = new_data;

	// 2.操作节点
		// 2.1 操作新节点(顺序无所谓)
	// 新节点->next = 头节点->next;
	// 新节点->prev = 头节点;
	new->next = head->next;
	new->prev = head;
		// 2.2 操作前后节点(顺序不能反)
	// 后节点->prev = 新节点;
	// 前节点->next = 新节点;
	head->next->prev = new;
	head->next = new;
}

// 初始化一个节点
node *link_list_init(void)
{
	// 1.申请堆空间,并初始化(指针域指向自身)
	node *p = malloc(sizeof(node));
	if(p == NULL)
	{
		printf("malloc failled\n");
		return NULL;
	}
	p->data = 0;
	p->next = p;
	p->prev = p;

	// 2.返回
	return p;
}
在这里插入图片描述
在这里插入图片描述

二.内核链表

1.kernel_list.h

代码语言:javascript
复制
#ifndef __DLIST_H
#define __DLIST_H

/* This file is from Linux Kernel (include/linux/list.h)
* and modified by simply removing hardware prefetching of list items.
* Here by copyright, credits attributed to wherever they belong.
* Kulesh Shanmugasundaram (kulesh [squiggly] isis.poly.edu)
*/

/*
* Simple doubly linked list implementation.
*
* Some of the internal functions (“__xxx”) are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
/**
 * container_of - cast a member of a structure out to the containing structure
 *
 * @ptr:	the pointer to the member.
 * @type:	the type of the container struct this is embedded in.
 * @member:	the name of the member within the struct.
 *
 */
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

#define container_of(ptr, type, member) ({			\
        const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
        (type *)( (char *)__mptr - offsetof(type,member) );})
/*
 * These are non-NULL pointers that will result in page faults
 * under normal circumstances, used to verify that nobody uses
 * non-initialized list entries.
 */
#define LIST_POISON1  ((void *) 0x00100100)
#define LIST_POISON2  ((void *) 0x00200)

struct list_head
{
	struct list_head *prev;
	struct list_head *next;
};

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)

// 宏定义语法规定只能有一条语句
// 如果需要多条语句,那就必须将多条语句放入一个do{}while(0)中使之成为一条复合语句
#define INIT_LIST_HEAD(ptr) \
    do { \
    (ptr)->next = (ptr); \
    (ptr)->prev = (ptr); \
} while (0)

/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add(struct list_head *new,
				struct list_head *prev,
				struct list_head *next)
{
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}

/**
* list_add – add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}

/**
* list_add_tail – add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}

/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
	next->prev = prev;
	prev->next = next;
}

/**
* list_del – deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty on entry does not return true after this, the entry is in an undefined state.
*/
static inline void list_del(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	entry->next = (void *) 0;
	entry->prev = (void *) 0;
}

/**
* list_del_init – deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static inline void list_del_init(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	INIT_LIST_HEAD(entry);
}

/**
* list_move – delete from one list and add as another’s head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *list,
				struct list_head *head)
{
	__list_del(list->prev, list->next);
	list_add(list, head);
}

/**
* list_move_tail – delete from one list and add as another’s tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *list,
					struct list_head *head)
{
	__list_del(list->prev, list->next);
	list_add_tail(list, head);
}

/**
* list_empty – tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(struct list_head *head)
{
	return head->next == head;
}

static inline void __list_splice(struct list_head *list,
					struct list_head *head)
{
	struct list_head *first = list->next;
	struct list_head *last = list->prev;
	struct list_head *at = head->next;

	first->prev = head;
	head->next = first;

	last->next = at;
	at->prev = last;
}

/**
* list_splice – join two lists
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(struct list_head *list, struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head);
}

/**
* list_splice_init – join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head);
INIT_LIST_HEAD(list);
}
}

/**
* list_entry – get the struct for this entry
* @ptr:    the &struct list_head pointer.
* @type:    the type of the struct this is embedded in.
* @member:    the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))

/**
* list_for_each    -    iterate over a list
* @pos:    the &struct list_head to use as a loop counter.
* @head:    the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); \
pos = pos->next)
/**
* list_for_each_prev    -    iterate over a list backwards
* @pos:    the &struct list_head to use as a loop counter.
* @head:    the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; pos != (head); \
pos = pos->prev)

/**
* list_for_each_safe    -    iterate over a list safe against removal of list entry
* @pos:    the &struct list_head to use as a loop counter.
* @n:        another &struct list_head to use as temporary storage
* @head:    the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)

/**
* list_for_each_entry    -    iterate over list of given type
* @pos:    the type * to use as a loop counter.
* @head:    the head for your list.
* @member:    the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member)                \
for (pos = list_entry((head)->next, typeof(*pos), member);    \
&pos->member != (head);                     \
pos = list_entry(pos->member.next, typeof(*pos), member))

/**
* list_for_each_entry_safe – iterate over list of given type safe against removal of list entry
* @pos:    the type * to use as a loop counter.
* @n:        another type * to use as temporary storage
* @head:    the head for your list.
* @member:    the name of the list_struct within the struct.
*/
#define list_for_each_entry_safe(pos, n, head, member)            \
for (pos = list_entry((head)->next, typeof(*pos), member),    \
n = list_entry(pos->member.next, typeof(*pos), member);    \
&pos->member != (head);                     \
pos = n, n = list_entry(n->member.next, typeof(*n), member))

#endif

2.内核链表

代码语言:javascript
复制
#include <stdio.h>
#include <stdlib.h>
#include "kernel_list.h"

// 内核链表节点结构体(大结构体)
typedef struct node{
	int data;	// 数据域
	struct list_head list;	// 小结构体(前后逻辑)
}node;

// 初始化一个空链表(只有一个头节点)
node *kl_init(void);
// 头插法
void kl_add(int new_data, node *head);
// 尾插
void kl_add_tail(int new_data, node *head);
// 遍历内核链表
void kl_show(node *head);
// 删除数据节点
void kl_del(int del_data, node *head);

int main()
{
	// 1.初始化一个空链表(只有一个头节点)
	node *head = kl_init();

	// 2.数据操作
	int cmd;
	while(1)
	{
		printf("Pls Input: ");
		scanf("%d", &cmd); while(getchar()!='\n');
		if(cmd > 0)
			// kl_add(cmd, head);		// 头插
			kl_add_tail(cmd, head);		// 尾插
		else if(cmd < 0)
			kl_del(-cmd, head);	//删除

		kl_show(head);
	}

	return 0;
}

// 删除数据节点
void kl_del(int del_data, node *head)
{
	// 0.判断是否为空链表
	if(list_empty(&head->list))
	{
		printf("ERROR: empty!\n");
		return;
	}

	// 1.遍历链表,对比找到指定节点,找到则跳出break
		// 如果在遍历中删除、移动节点,必须使用安全模式
		// 如果只是遍历访问,不修改节点,使用安全/非安全都可以!
	node *get_node;
	struct list_head *pos, *n;
	list_for_each_safe(pos, n, &head->list)
	{
		get_node = list_entry(pos, node, list);
		if(get_node->data == del_data)
			break;
	}

	// 2.如果找不到(循环正常结束)
	if(pos == &head->list)
	{
		printf("ERROR: Not Found!\n");
		return;
	}

	// 3.删除节点,释放大结构体堆空间
	list_del(pos);
	free(get_node);
}

// 尾插
void kl_add_tail(int new_data, node *head)
{
	// 1.给新节点分配堆空间,并把数据放入
	node *new = kl_init();
	new->data = new_data;

	// 2.操作节点
	list_add_tail(&new->list, &head->list);
}

// 头插法
void kl_add(int new_data, node *head)
{
	// 1.给新节点分配堆空间,并把数据放入
	node *new = kl_init();
	new->data = new_data;

	// 2.操作节点
	list_add(&new->list, &head->list);
}

// 遍历内核链表
void kl_show(node *head)
{
	node *get_node;			// 暂存大结构体地址
	struct list_head *pos;	// 遍历指针

	list_for_each(pos, &head->list)
	{
		// 由小结构体地址pos,获得大结构体地址
		get_node = list_entry(pos, node, list);
		printf("%d ", get_node->data);
	}
	printf("\n");
}

// 初始化一个空链表(只有一个头节点)
node *kl_init(void)
{
	// 1.分配一个节点堆空间,清空数据并初始化,2个指针指向自身。
	node *p = malloc(sizeof(node));
	if(p == NULL)
	{
		printf("malloc failed\n");
		return NULL;
	}
	p->data = 0;
	// p->list.next = &p->list;
	// p->list.prev = &p->list;

	INIT_LIST_HEAD(&p->list);

	// 2.返回堆空间
	return p;
}

2。内核链表_奇升偶降重排

代码语言:javascript
复制
#include <stdio.h>
#include <stdlib.h>
#include "kernel_list.h"

// 内核链表节点结构体(大结构体)
typedef struct node{
	int data;	// 数据域
	struct list_head list;	// 小结构体(前后逻辑)
}node;

// 初始化一个空链表(只有一个头节点)
node *kl_init(void);
// 头插法
void kl_add(int new_data, node *head);
// 尾插
void kl_add_tail(int new_data, node *head);
// 遍历内核链表
void kl_show(node *head);
// 删除数据节点
void kl_del(int del_data, node *head);
// 奇升偶降重排
void rearrange(node *head);


int main()
{
	// 1.初始化一个空链表(只有一个头节点)
	node *head = kl_init();

	// 2.数据插入并显示
	int cmd;
	printf("Pls Input: ");
	scanf("%d", &cmd); while(getchar()!='\n');

	int i;
	for(i=1; i<=cmd; i++)
		kl_add_tail(i, head);		// 尾插
	kl_show(head);

	// 3.重排后再次显示
	rearrange(head);
	kl_show(head);

	return 0;
}

// 奇升偶降重排
void rearrange(node *head)
{
	// pos向前遍历,直到重新回到head
		// 如奇数,则继续遍历
		// 如偶数,则移动到链表最后
	// node *get_node;
	// struct list_head *pos, *n;
	// for(pos=(&head->list)->prev->prev; pos!=&head->list; pos=n)
	// {
	// 	n=pos->prev;
	// 	get_node = list_entry(pos, node, list);
	// 	if(get_node->data%2 == 0)
	// 		list_move_tail(pos, &head->list);
	// }

	// 自行添加的前序遍历安全模式
	node *get_node;
	struct list_head *pos, *n;
	list_for_each_prev_safe(pos, n, &head->list)
	{
		get_node = list_entry(pos, node, list);
		if(get_node->data%2 == 0)
			list_move_tail(pos, &head->list);
	}
}

// 删除数据节点
void kl_del(int del_data, node *head)
{
	// 0.判断是否为空链表
	if(list_empty(&head->list))
	{
		printf("ERROR: empty!\n");
		return;
	}

	// 1.遍历链表,对比找到指定节点,找到则跳出break
		// 如果在遍历中删除、移动节点,必须使用安全模式
		// 如果只是遍历访问,不修改节点,使用安全/非安全都可以!
	node *get_node;
	struct list_head *pos, *n;
	list_for_each_safe(pos, n, &head->list)
	{
		get_node = list_entry(pos, node, list);
		if(get_node->data == del_data)
			break;
	}

	// 2.如果找不到(循环正常结束)
	if(pos == &head->list)
	{
		printf("ERROR: Not Found!\n");
		return;
	}

	// 3.删除节点,释放大结构体堆空间
	list_del(pos);
	free(get_node);
}

// 尾插
void kl_add_tail(int new_data, node *head)
{
	// 1.给新节点分配堆空间,并把数据放入
	node *new = kl_init();
	new->data = new_data;

	// 2.操作节点
	list_add_tail(&new->list, &head->list);
}

// 头插法
void kl_add(int new_data, node *head)
{
	// 1.给新节点分配堆空间,并把数据放入
	node *new = kl_init();
	new->data = new_data;

	// 2.操作节点
	list_add(&new->list, &head->list);
}

// 遍历内核链表
void kl_show(node *head)
{
	node *get_node;			// 暂存大结构体地址
	struct list_head *pos;	// 遍历指针

	list_for_each(pos, &head->list)
	{
		// 由小结构体地址pos,获得大结构体地址
		get_node = list_entry(pos, node, list);
		printf("%d ", get_node->data);
	}
	printf("\n");
}

// 初始化一个空链表(只有一个头节点)
node *kl_init(void)
{
	// 1.分配一个节点堆空间,清空数据并初始化,2个指针指向自身。
	node *p = malloc(sizeof(node));
	if(p == NULL)
	{
		printf("malloc failed\n");
		return NULL;
	}
	p->data = 0;
	// p->list.next = &p->list;
	// p->list.prev = &p->list;

	INIT_LIST_HEAD(&p->list);

	// 2.返回堆空间
	return p;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-02-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一.双向循环链表
  • 二.内核链表
    • 1.kernel_list.h
      • 2.内核链表
        • 2。内核链表_奇升偶降重排
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档