前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >opencv(4.5.3)-python(十二)--图像阈值处理

opencv(4.5.3)-python(十二)--图像阈值处理

作者头像
用户9875047
发布2022-12-07 10:15:07
4630
发布2022-12-07 10:15:07
举报
文章被收录于专栏:机器视觉全栈er机器视觉全栈er

翻译及二次校对:cvtutorials.com

目标

  • • 在本教程中,你将学习简单的阈值处理、自适应阈值处理和Otsu阈值处理。
  • • 你将学习函数cv.threshold和cv.adaptiveThreshold。

简单的阈值处理

对于每个像素,应用相同的阈值。如果像素的值小于阈值,它就被设置为0,否则就被设置为一个最大值。函数cv.threshold被用来应用阈值化。第一个参数是源图像,它应该是一个灰度图像。第二个参数是阈值,用于对像素值进行分类。第三个参数是最大值,它被分配给超过阈值的像素值。OpenCV提供了不同类型的阈值处理,由该函数的第四个参数给出。上述的基本阈值处理是通过使用cv.THRESH_BINARY类型完成的。所有简单的阈值处理类型是:

  • • cv.THRESH_BINARY
  • • cv.THRESH_BINARY_INV
  • • cv.THRESH_TRUNC
  • • cv.THRESH_TOZERO
  • • cv.THRESH_TOZERO_INV

该方法返回两个输出。第一个是使用的阈值,第二个是阈值化的图像。

这段代码比较了不同的简单阈值处理类型。

代码语言:javascript
复制
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('gradient.png',0)
ret,thresh1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
ret,thresh2 = cv.threshold(img,127,255,cv.THRESH_BINARY_INV)
ret,thresh3 = cv.threshold(img,127,255,cv.THRESH_TRUNC)
ret,thresh4 = cv.threshold(img,127,255,cv.THRESH_TOZERO)
ret,thresh5 = cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray',vmin=0,vmax=255)
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

注:为了绘制多个图像,我们使用了plt.subplot()函数。请查阅matplotlib文档以了解更多细节。

该代码产生了这样的结果。

自适应阈值处理

在上一节中,我们使用一个全局值作为阈值。但这可能不是在所有情况下都好,例如,如果一幅图像在不同区域有不同的光照条件。在这种情况下,自适应阈值处理可以提供帮助。在这里,算法根据一个像素周围的小区域来确定该像素的阈值。因此,我们对同一图像的不同区域得到不同的阈值,这对具有不同光照度的图像有更好的效果。

除了上述参数外,cv.adaptiveThreshold方法还需要三个输入参数:

参数adaptiveMethod决定如何计算阈值:

  • • cv.ADAPTIVE_THRESH_MEAN_C:阈值是邻近区域的平均值减去常数C。
  • • cv.ADAPTIVE_THRESH_GAUSSIAN_C:阈值是邻域值的高斯加权和减去常数C。

参数blockSize决定了邻域的大小,参数C是一个常数,从邻域像素的平均值或加权和中减去。

下面的代码比较了全局阈值处理和自适应阈值处理对不同照度的图像的影响。

代码语言:javascript
复制
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('sudoku.png',0)
img = cv.medianBlur(img,5)
ret,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
th2 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_MEAN_C,\
            cv.THRESH_BINARY,11,2)
th3 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,\
            cv.THRESH_BINARY,11,2)
titles = ['Original Image', 'Global Thresholding (v = 127)',
            'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]
for i in range(4):
    plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

结果如下:

Otsu的二值化

在全局阈值化中,我们使用一个任意选择的值作为阈值。相比之下,Otsu的方法避免了选择一个值,而是自动确定它。

考虑一个只有两个不同图像值的图像(双峰图像),其中直方图只由两个峰值组成。一个好的阈值会在这两个值的中间。同样地,Otsu的方法从图像直方图中确定一个最佳的全局阈值。

为了做到这一点,使用了cv.threshold()函数,其中cv.THRESH_OTSU被作为一个额外的标志传递。阈值可以任意选择。然后,该算法找到最佳的阈值,并作为第一个输出返回。

请看下面的例子。输入的图像是一个有噪声的图像。在第一种情况下,全局阈值为127的阈值被应用。在第二种情况下,直接应用Otsu的阈值处理。在第三种情况下,首先用5x5高斯核过滤图像以去除噪声,然后应用Otsu的阈值。看看噪声过滤是如何改善结果的。

代码语言:javascript
复制
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('noisy2.png',0)
# global thresholding
ret1,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
# Otsu's thresholding
ret2,th2 = cv.threshold(img,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
# Otsu's thresholding after Gaussian filtering
blur = cv.GaussianBlur(img,(5,5),0)
ret3,th3 = cv.threshold(blur,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
# plot all the images and their histograms
images = [img, 0, th1,
          img, 0, th2,
          blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)',
          'Original Noisy Image','Histogram',"Otsu's Thresholding",
          'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]
for i in range(3):
    plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
    plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])
    plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
    plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])
    plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
    plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])
plt.show()

结果如下:

Otsu的二值化是如何工作的?

本节演示了Otsu二值化的Python实现,以显示它是如何实际工作的。如果你不感兴趣,你可以跳过这部分。

由于我们处理的是双模态图像,Otsu的算法试图找到一个阈值(t),使加权的类内方差最小,该阈值由以下公式给出:

这里,

它实际上是找到一个位于两个峰值之间的t值,使两个类的方差最小。它可以在Python中简单地实现,如下:

代码语言:javascript
复制
img = cv.imread('noisy2.png',0)
blur = cv.GaussianBlur(img,(5,5),0)
# find normalized_histogram, and its cumulative distribution function
hist = cv.calcHist([blur],[0],None,[256],[0,256])
hist_norm = hist.ravel()/hist.sum()
Q = hist_norm.cumsum()
bins = np.arange(256)
fn_min = np.inf
thresh = -1
for i in range(1,256):
    p1,p2 = np.hsplit(hist_norm,[i]) # probabilities
    q1,q2 = Q[i],Q[255]-Q[i] # cum sum of classes
    if q1 < 1.e-6 or q2 < 1.e-6:
        continue
    b1,b2 = np.hsplit(bins,[i]) # weights
    # finding means and variances
    m1,m2 = np.sum(p1*b1)/q1, np.sum(p2*b2)/q2
    v1,v2 = np.sum(((b1-m1)**2)*p1)/q1,np.sum(((b2-m2)**2)*p2)/q2
    # calculates the minimization function
    fn = v1*q1 + v2*q2
    if fn < fn_min:
        fn_min = fn
        thresh = i
# find otsu's threshold value with OpenCV function
ret, otsu = cv.threshold(blur,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
print( "{} {}".format(thresh,ret) )

其他资源

  • • 《数字图像处理》,Rafael C. Gonzalez

练习

  • • 对Otsu的二进制化有一些优化。你可以搜索并实现它。
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2022-07-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器视觉全栈er 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档