预计阅读时间:5min
阅读建议:本篇为实战经验,篇幅较短,建议完整阅读。
解决痛点:相关性分析相信大家都有一定了解,那么在工作中要如何赋能业务呢?
01
相关性分析是什么?
相关性分析用于度量两个或多个变量之间的相似程度,并通过其关系探索其业务价值。这里要注意一下,相关性≠因果性,业务往往通过「相关性」探索问题,并通过「因果性」验证问题,『因果分析方法』可以戳蓝字部分。
02
相关性计算方式有哪些?
相关性度量方式有很多,列出小火龙常用的两种,分别为「相关系数法」以及「信息增益/信息熵法」。具体方法及说明如下图:
其中,「连续性变量」常用pearson相关系数,「离散型变量」常用随机森林特征贡献度。
03
相关性分析实战场景
业务上度量A与B的相关性,往往A是业务目标变量,而B是可能影响目标变量的因子,探索哪些因子B对目标A起到作用。听起来可能有点虚,举个例子:
业务希望提升用户留存,哪些关键事件对留存有正向影响?
这个命题,就是为了探索用户增长里提到的「Aha Moment」,挖掘哪些关键事件对留存可能有正向影响。具体分析实施步骤如下:
步骤一:收集可能对用户产生影响的关键事件。需要注意:关键事件触发量级不宜过小。
步骤二:通过相关性,度量「关键事件是否触发」与「用户留存」之间的关系,此处采用「随机森林特征贡献度方式」,如下图,探索发现「登录行为、购买行为、互动行为」贡献度较大,可能对用户留存产生影响。
步骤三:根据探索的三个方向,设计能够将用户引导至关键行为的业务改动,并通过AB实验加以验证。(因果验证)
步骤四:通过AB实验评估大盘北极星指标及期望提升指标的改进情况,如满足预期,则表示该产品改动对业务有正向影响。
以上就是一个功能相关性分析在业务中的实战应用案例。
以上就是本期的内容分享。码字不易,如果觉得对你有一点点帮助,欢迎「关注」「点赞」「分享」哦,我会持续为大家输出优质的「原创内容」~~