前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >不理解双极性晶体管(BJT),怎么做手机射频PA?

不理解双极性晶体管(BJT),怎么做手机射频PA?

作者头像
海大指南针
发布2022-12-20 15:44:03
5060
发布2022-12-20 15:44:03
举报

前言

首先介绍了双极性晶体管(BJT)的工作原理,接着演示了晶体管的伏安(I-V)特性,电流增益(current gain)和输出电导(conductance)。高能注入和重掺杂带来的能带狭窄也会介绍到。解释了SiGe晶体管、度越时间、截止频率的基本概念。另外介绍一些BJT的晶体管模型,比如Ebers-Moll,smal-signal和charge control模型。每一个模型都有各自的应用范围。

BJT双极性集体管是在1948年由坐落在美国新泽西的贝尔电话实验室发明的。BJT是第一个量产的晶体管,领先于MOSFET十年多。大约在1968年,当金属氧化物半导体场效应管(MOSFET)被发明后,MOSFET迅速凭借高密度低功耗的优势,超越了BJT。但是,在一些高频率和模拟领域,BJT依然是更好的选择,这是因为BJT具有高速、低噪声和高输出功率的特点。大家比较熟悉的手机射频放大器都是采用BJT。补充说明:高密度互补MOS芯片,如果集成了少量的BJT,这种一般叫做BiCMOS技术。

双极性Bipolar表示在BJT工作过程中,电子和空穴都参与了。事实上,在PN结中,少数派的载流子起到了关键作用。结(Junction)表示PN junction对于BJT的工作起到了至关重要的作用。

介绍BJT

组成BJT的是重掺杂的发射极(emitter),P型的基极(base)和一个N型的集电极(collector)。这类器件叫做NPN BJT。类似,一个PNP BJT有一个P+发射极,N型的base和P型的collector。相比于PNP的三极管,NPN的三极管表现出更高的跨导和速度,这是因为电子相对于空穴移动速度更快。所以行业内一般说BJT,指的就是NPN型。

(a)NPN BJT的示意图和正常电压极性

(b)从发射极注入到基极的电子决定了集电极电流Ic

(c)Ic基本上被VBE决定,对于VCB不敏感

当base-emitter发射结正偏,电子就被注入到了轻度掺杂的base。他们扩散到反向偏置的base-collector结(耗尽层边缘),最后进入集电极。这就产生了集电极电流Ic。只要是VCB是反向偏置的(或者小信号正偏),那么Ic就和VCB没有关联。从emitter注入到collector的电子比率决定了Ic,或者说由VBE决定。一般在PN 二极管中,这个注入比率大概和下面的表达式成比例。

从图(c)中可以很明显看到这个结论。

通常发射极会直接接到地。这里的emitter和collector类似于MOSFET里面的source(源) 和drain(漏)。base类似gate(栅)。Ic电流相对于VCE的图例请参考下图。

(a)共射架构

(b)Ic vs VCE

(c)可以采用IB来作为参数

(d)NPN电路符号

当VCE约等于0.3V,base-collector正偏,Ic下降。因为寄生电阻下降,很难精确评估base-emitter结电压,所以一般测量IB。下回我们来讨论Ic和IB的比例关系。 ---------待续---------

致谢

全文翻译自George Mason University的半导体器件基础。原作者拥有全部版权。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2022-12-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 iRF射频前端产业观察 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档