前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【mongo 系列】聚合知识点梳理

【mongo 系列】聚合知识点梳理

作者头像
阿兵云原生
发布2023-02-16 11:26:30
3.7K0
发布2023-02-16 11:26:30
举报
文章被收录于专栏:golang云原生new

聚合知识点梳理

什么是聚合数据?

我们先来看看聚合数据

数据聚合(Data Aggregation)是指合并来自不同数据源的数据。. 聚类也称聚类分析,亦称为群集分析,是对于统计数据分析的一门技术, 在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息。

什么是聚合查询?

聚合操作处理数据是记录并返回计算结果的

局和操作组的值来自多个文档,可以对分组数据执行各种操作以返回单个结果

聚合操作一般包含下面三类:

  • 单一作用聚合
  • 聚合管道
  • MapReduce

https://docs.mongodb.com/manual/aggregation/

单一作用聚合

mongodb 自身提供如下几个单一作用的聚合函数,这些单一的聚合函数,相对聚合管道和mapReduce 来说不够灵活,也缺乏丰富的功能

  • db.集合名字.estimatedDocumentCount()

粗略的计算文档的个数,是一个估计值

  • db.集合名字.count()

计算文档的数量,是通过聚合来计算的

  • db.集合名字.distinct()

查看某一个字段都有哪些值

例如:

代码语言:javascript
复制
> db.users.find()
{ "_id" : ObjectId("61584aeeee74dfe04dac57e9"), "name" : "xiaokeai", "age" : 25, "hobby" : "reading", "infos" : { "tall" : 175, "height" : 62 }, "school" : "cs" }
{ "_id" : ObjectId("615a56d6bc6afecd2cff8f96"), "name" : "xiaozhu", "age" : 15, "hobby" : "basketball", "infos" : { "tall" : 190, "height" : 70 }, "school" : "sh" }
{ "_id" : ObjectId("615a5856d988690b07c69f64"), "name" : "xiaopang" }
{ "_id" : ObjectId("615a5917d988690b07c69f66"), "name" : "nancy", "age" : 25, "hobby" : "study", "infos" : { "tall" : 175, "height" : 60 }, "school" : "hn" }
{ "_id" : ObjectId("615a5917d988690b07c69f67"), "name" : "job", "age" : 19, "hobby" : "basketball", "infos" : { "tall" : 170, "height" : 70 }, "school" : "nj" }

> db.users.distinct("age")
[ 15, 19, 25 ]

上述例子,使用 db.users.distinct("age") 查看 age 字段存在的 value 有哪些

聚合管道

https://docs.mongodb.com/manual/core/aggregation-pipeline/

聚合管道包含多个阶段,每个阶段在文件通过管道时进行转换,这里的管道,我们可以理解成 linux 里面的管道,下一个指令的输入是上一个指令的输出

db.集合名.aggregate(<pipelines>,<options>)

  • pipelines

一组数据聚合阶段,除了 out , Merge,

  • options

可选,聚合操作的其他参数

这里面包含了 查询计划,是否使用临时文件,游标,最大操作时间,读写策略,强制索引 等等

常用的管道聚合阶段

梳理一下常用的管道聚合阶段如下

阶段关键字

描述

$match

筛选条件

$group

分组

$project

显示字段

$lookup

多表关联

$unwind

展开数组

$out

结果汇入新表

$count

$文档计数

$sort ,$skip,$limit

排序和分页

其他的阶段我们查看官网 https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/

例如 $count 的例子

第一个 group 就用于筛选数据,聚合管道中,此处的输出是下一个管道的输入,下一个管道是 project 选择显示的字段

MapReduce

https://docs.mongodb.com/manual/core/map-reduce/

MapReduce 操作将大量的数据处理工作拆分成多个线程并行的处理,然后将结果合并在一起

MapReduce 具有如下 2 个阶段:

  • 将具有相同 key 的文档数据整合在一起的 map 阶段
  • 组合 map 操作的结果进行统计输出的 reduce 阶段

可以看一个官网的例子

emit 将 cust_id 和 amount 做成 map 映射,筛选条件是 status:"A",最后把结果放到一张新的集合中,命名为 order_totals

MapReduce 操作语法如下:

代码语言:javascript
复制
do.集合名.mapReduce(<map>,<reduce>,
{
  out:<collection>,query:<document>,
  sort:<document>,limit:<number>,
  finalize:<function>mscope:<document>,
  jsMode:<boolean>,verbose:<boolean>,
  bypassDocumentValidation:<boolean>
}
)
  • map

将数据拆分成键值对,交给 reduce 函数

  • reduce

根据键将值进行统计运算

  • out

可选,将结果汇入到指定表格中

  • query

可选参数,筛选数据的条件,结果是送入 map

  • sort

排序完成后,送入 map

  • limit

限制送入 map 的文档数

  • finalize

可选,修改 reduce 的结果后进行输出

  • scope

可选,指定 map ,reduce ,finalize 的全局变量

  • jsMode

可选,默认是 false, 在 mapreduce 的过程中是否将数据转换成 bson 格式

  • verbose

可选参数,是否在结果中显示时间,默认是 false 的

  • bypassDocumentValidation

可选参数,是否略过数据校验的流程

聚合管道和 MapReduce 的对比

比较项

聚合管道

MapReduce

目的

用于提高聚合任务的性能和可用性

用于处理大数据集,数据巨大的时候,是用哪个 MapReduce 会更方便

特征

可以根据需要重复管道运算符,管道操作不必为每个输入文档都生成一个输出文档

除分组操作外,还可执行复杂的聚合任务以及对不断增长的数据集执行增量聚合

灵活性

限于聚合管道支持的运算符和表达式

自定义 map , reduce 以及 finalize javascript 函数提供了灵活性以及聚合逻辑

输出结果

返回结果作为游标,如果管道包括一个 $out 或者 多个 $merge 阶段,则光标为空

以各种选项 内联,新收集,合并,替换,缩小,返回结果

分片

支持非分片和分片输入集合

支持非分片和分片输入集合

再详细的对比,可以查看官网 https://docs.mongodb.com/manual/reference/map-reduce-to-aggregation-pipeline/

欢迎点赞,关注,收藏

朋友们,你的支持和鼓励,是我坚持分享,提高质量的动力

好了,本次就到这里

技术是开放的,我们的心态,更应是开放的。拥抱变化,向阳而生,努力向前行。

我是阿兵云原生,欢迎点赞关注收藏,下次见~

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-08-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 阿兵云原生 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 聚合知识点梳理
    • 什么是聚合数据?
      • 什么是聚合查询?
        • 单一作用聚合
          • 聚合管道
            • 常用的管道聚合阶段
              • MapReduce
                • 聚合管道和 MapReduce 的对比
                  • 欢迎点赞,关注,收藏
                  相关产品与服务
                  数据库
                  云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档