首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Linux cpuidle framework(1)_概述和软件架构

Linux cpuidle framework(1)_概述和软件架构

作者头像
233333
发布2023-05-23 10:03:13
5240
发布2023-05-23 10:03:13
举报

1. 前言

在计算机系统中,CPU的功能是执行程序,总结起来就是我们在教科书上学到的:取指、译码、执行。那么问题来了,如果没有程序要执行,CPU要怎么办?也许您会说,停掉就是了啊。确实,是要停掉,但何时停、怎么停,却要仔细斟酌,因为实际的软硬件环境是非常复杂的。

我们回到Linux kernel上,Linux系统中,CPU被两类程序占用:一类是进程(或线程),也称进程上下文;另一类是各种中断、异常的处理程序,也称中断上下文。

进程的存在,是用来处理事务的,如读取用户输入并显示在屏幕上。而事务总有处理完的时候,如用户不再输入,也没有新的内容需要在屏幕上显示。此时这个进程就可以让出CPU,但会随时准备回来(如用户突然有按键动作)。同理,如果系统没有中断、异常事件,CPU就不会花时间在中断上下文。

在Linux kernel中,这种CPU的无所事事的状态,被称作idle状态,而cpuidle framework,就是为了管理这种状态。

注:cpuidle framework系列文章会以ARM64作为示例平台,由于ARM64刚刚发布不久,较早版本的kernel没有相关的代码,因此选用了最新的3.18-rc4版本的kernel。

2. 功能概述

曾经有过一段时间,Linux kernel的cpu idle框架是非常简单的,简单到driver工程师只需要在“include\asm-arm\arch-xxx\system.h”中定义一个名字为arch_idle的inline函数,并在该函数中调用kernel提供的cpu_do_idle接口,就Okay了,剩下的实现kernel全部帮我们做了,如下:

   1: static inline void arch_idle(void)
   2: {
   3:         cpu_do_idle();
   4: }

以蜗蜗之前使用过的一个ARM926的单核CPU为例(内核版本为Linux2.6.23),cpuidle的处理过程是: B start_kernel(arch\arm\kernel\head-common.S) start_kernel->rest_init(init\main.c) ;系统初始化完成后,将第一个进程(init)变为idle进程, ;以下都是在进程的循环中,周而复始… cpu_idle->default_idle(arch\arm\kernel\process.c) arch_idle(include\asm-arm\arch-xxx\system.h) cpu_do_idle(include/asm-arm/cpu-single.h) cpu_arm926_do_idle(arch/arm/mm/proc-arm926.S) mcr p15, 0, r0, c7, c0, 4 @ Wait for interrupt ;WFI指令

虽然简单,却包含了idle处理的两个重点:

1)idle进程

idle进程的存在,是为了解决“何时idle”的问题。

我们知道,Linux系统运行的基础是进程调度,而所有进程都不再运行时,称作cpu idle。但是,怎么判断这种状态呢?kernel采用了一个比较简单的方法:在init进程(系统的第一个进程)完成初始化任务之后,将其转变为idle进程,由于该进程的优先级是最低的,所以当idle进程被调度到时,则说明系统的其它进程不再运行了,也即CPU idle了。最终,由idle进程调用idle指令(这里为WFI),让CPU进入idle状态。

“ARM WFI和WFE指令”中介绍过,WFI Wakeup events会把CPU从WFI状态唤醒,通常情况下,这些events是一些中断事件,因此CPU唤醒后会执行中断handler,在handler中会wakeup某些进程,在handler返回的时候进行调度,当没有其他进程需要调度执行的时候,调度器会恢复idle进程的执行,当然,idle进程不做什么,继续进入idle状态,等待下一次的wakeup。

2)WFI

WFI用于解决“怎么idle”的问题。

一般情况下,ARM CPU idle时,可以使用WFI指令,把CPU置为Wait for interrupt状态。该状态下,至少(和具体ARM core的实现有关,可参考“ARM WFI和WFE指令”)会把ARM core的clock关闭,以节省功耗。

也许您会觉得,上面的过程挺好了,为什么还要开发cpuide framework?蜗蜗的理解是:

ARM CPU的设计越来越复杂,对省电的要求也越来越苛刻,因而很多CPU会从“退出时的延迟”和“idle状态下的功耗”两个方面考虑,设计多种idle级别。对延迟较敏感的场合,可以使用低延迟、高功耗的idle;对延迟不敏感的场合,可以使用高延迟、低功耗的idle。 而软件则需要根据应用场景,在恰当的时候,选择一个合适的idle状态。而选择的策略是什么,就不是那么简单了。这就是cpuidle framework的存在意义(我们可以根据下面cpuidle framework的软件架构,佐证这一点)。

3. 软件架构

Linux kernel中,cpuidle framework位于“drivers/cpuidle”文件夹中,包含cpuidle core、cpuidle governors和cpuidle drivers三个模块,再结合位于kernel sched中的cpuidle entry,共同完成cpu的idle管理。软件架构如下图:

1)kernel schedule模块

位于kernel\sched\idle.c中,负责实现idle线程的通用入口(cpuidle entry)逻辑,包括idle模式的选择、idle的进入等等。

2)cpuidle core

cpuidle core负责实现cpuidle framework的整体框架,主要功能包括:

根据cpuidle的应用场景,抽象出cpuidle device、cpuidle driver、cpuidle governor三个实体; 以sysfs的形式,向用户空间提供接口; 向下层的cpuidle drivers模块,提供统一的driver注册和管理接口; 向下层的governors模块,提供统一的governor注册和管理接口。

cpuidle core的代码主要包括:cpuidle.c、driver.c、governor.c、sysfs.c。

3)cpuidle drivers

不同的architecture、不同的CPU core,会有不同的cpuidle driver,平台驱动的开发者,可以在cpuidle core提供的框架之下,开发自己的cpuidle driver。代码主要包括:cpuidle-xxx.c。

4)cpuidle governors

Linux kernel的framework有两种比较固定的抽象模式:

模式1,provider/consumer模式,interrupt、clock、timer、regulator等大多数的framework是这种模式。它的特点是,这个硬件模块是为其它一个或多个模块服务的,因而framework需要从对上(consumer)和对下(provider)两个角度进行软件抽象; 模式2,driver/governor模式,本文所描述的cpuidle framework即是这种模式。它的特点是:硬件(或者该硬件所对应的驱动软件)可以提供多种可选“方案”(这里即idle level),“方案”的实现(即机制),由driver负责,但是到底选择哪一种“方案”(即策略),则由另一个模块负责(即这里所说的governor)。

模式2的解释可能有点抽象,把它放到cpuidle的场景里面,就很容易理解了:

前面讲过,很多CPU提供了多种idle级别(即上面所说的“方案”),这些idle 级别的主要区别是“idle时的功耗”和“退出时延迟”。cpuidle driver(机制)负责定义这些idle状态(每一个状态的功耗和延迟分别是多少),并实现进入和退出相关的操作。最终,cpuidle driver会把这些信息告诉governor,由governor根据具体的应用场景,决定要选用哪种idle状态(策略)。

kernel中,cpuidle governor都位于governors/目录下。

4. 软件流程

在阅读本章之前,还请读者先阅读如下三篇文章:

Linux cpuidle framework(2)_cpuidle core

Linux cpuidle framework(3)_ARM64 generic CPU idle driver

Linux cpuidle framework(4)_menu governor

前面提到过,kernel会在系统启动完成后,在init进程(或线程)中,处理cpuidle相关的事情。大致的过程是这样的(kernel启动相关的分析,会在其它文章中详细介绍):

首先需要说明的是,在SMP(多核)系统中,CPU启动的过程是: 1)先启动主CPU,启动过程和传统的单核系统类似:stext-->start_kernel-->rest_init-->cpu_startup_entry 2)启动其它CPU,可以有多种方式,例如CPU hotplug等,启动过程为:secondary_startup-->__secondary_switched-->secondary_start_kernel-->cpu_startup_entry 上面的代码位于./arch/arm64/kernel/head.S、init/main.c等等,感兴趣的读者可以自行参考。最终都会殊途同归,运行至cpu_startup_entry接口,该接口位于kernel/sched/idle.c中,负责处理CPU idle的事情,流程如下(暂时忽略一些比较难理解的分支,如cpu idle poll等)。

cpu_startup_entry流程:

cpu_startup_entry arch_cpu_idle_prepare,进行idle前的准备工作,ARM64中没有实现 cpu_idle_loop,进入cpuidle的主循环 如果系统当前不需要调度(!need_resched()),执行后续的动作 local_irq_disable,关闭irq中断 arch_cpu_idle_enter,arch相关的cpuidle enter,ARM64中没有实现 cpuidle_idle_call,main idle function cpuidle_select,通过cpuidle governor,选择一个cpuidle state cpuidle_enter,通过cpuidle state,进入该idle状态 … 中断产生,idle返回(注意,此时irq是被禁止的,因此CPU不能响应产生中断的事件) cpuidle_reflect,通知cpuidle governor,更新状态 local_irq_enable,使能中断,响应中断事件,跳转到对应的中断处理函数 … arch_cpu_idle_exit,和enter类似,ARM64没有实现

具体的代码比较简单,不再分析了,但有一点,还需要着重说明一下:

使用cpuidle framework进入idle状态时,本地irq是处于关闭的状态,因此从idle返回时,只能接着往下执行,直到irq被打开,才能执行相应的中断handler,这和之前传统的cpuidle不同。同时也间接证实了“Linux cpuidle framework(4)_menu governor”中所提及的,为什么menu governor在reflect接口中只是简单的置一个标志。因为reflect是在关中断时被调用的,需要尽快返回,以便处理中断事件。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2023-05-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 前言
  • 2. 功能概述
  • 3. 软件架构
  • 4. 软件流程
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档