前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >车辆运动学方程推导和代码实现

车辆运动学方程推导和代码实现

作者头像
艰默
发布2024-01-04 15:17:52
2280
发布2024-01-04 15:17:52
举报
文章被收录于专栏:iDoitnowiDoitnow

1.运动学方程

自行车模型(Bicycle Model)是车辆数字化模型中最常见的一种运动学模型。其除了可以反映车辆的一些基础特性外,更重要的是简单易用。通常情况下我们会把车辆模型简化为二自由度的自行车模型。

自行车模型主要基于以下假设:

  • 车辆是在一个二维平面上运动,不考虑车辆垂直平面的(Z轴)方向上的移动。
  • 车辆左右两个轮胎的运动可以合并为一个轮胎来描述,即假设车辆左右轮胎在任意时刻都拥有相同(或者近乎相同)的转向角度和速度。
  • 车辆处于低速运动,可以忽略前后轴载荷的偏移。
  • 车辆整体是刚体结构。

一般情况下,我们可以将车辆运动学模型简化为如下形式:

\delta_f

:前轮转角

\delta_r

:后轮转角

\beta

:质心侧偏角,即质心速度与车身坐标系

X

轴的夹角

\varphi

:横摆角,即车的轴线与

X

轴的夹角

\beta+\varphi

:航向角

v

:质心速度

O

:速度瞬心

C

:质心

L_f

:质心

C

到前轴距离

L_r

:质心

C

到后轴距离

L

:轴距,

L=L_f+L_r

我们对质心速度

v

进行矢量分解,如上图中的

\dot{X}

\dot{Y}

所示,可以得到下式和

(2)

,根据理论力学刚体角速度公式可得公式

(3)

。由此得到单车模型下的车辆运动学微分模型为

\dot{X} = vcos(\beta+\varphi) \tag{1}
\dot{Y} = vsin(\beta+\varphi) \tag{2}
\dot{\varphi} = \frac{v}{R} \tag{3}

:一个刚体的角速度 = 线速度/线速度到速度瞬心的距离

根据图中几何关系和正弦定理可知:

\frac{L_f}{sin(\delta_f - \beta)} = \frac{R}{sin(\frac{\pi}{2} - \delta_f)} \tag{4}
\frac{L_r}{sin(\delta_r + \beta)} = \frac{R}{sin(\frac{\pi}{2} - \delta_r)} \tag{5}

由上式展开可得

\frac{L_f}{R} = \frac{sin\delta_f cos\beta - cos\delta_f sin\beta}{cos\delta_f} = tan\delta_fcos\beta - sin\beta\tag{6}
\frac{L_r}{R} = \frac{sin\delta_r cos\beta + cos\delta_r sin\beta}{cos\delta_r} = tan\delta_rcos\beta+sin\beta \tag{7}

由载荷的影响,质心

C

位置会发生变化,导致

L_f

L_r

的长度发生变化,但是由于

L = l_f +L_r

是不变的,因此由式子

(6)(7)

可得

\frac{L_f + L_r}{R} = \frac{L}{R} = (tan\delta_f + tan\delta_r)cos\beta \tag{8}

(3)

(8)

可得

\dot{\varphi} = \frac{v}{R} =\frac{v(tan\delta_f + tan\delta_r)cos\beta}{L} \tag{9}

由于低速条件下,我们可以假设车辆不会发生侧向滑动(漂移),此时我们可以将

v_y \approx 0

,因此

\beta \approx 0

,则横摆角

\varphi

约等于航向角

\varphi + \beta

。又由于大部分车辆不具备后轮转向的功能,因此我们可以假设后轮转角

\delta_r\approx0

,因此基于我们假设的前提下的运动学微分方程化简为

\dot{X} = vcos\varphi \\ \dot{Y} = vsin\varphi \tag{10} \\ \dot{\varphi} = \frac{vtan\delta_f}{L}

2.模型实现

python代码如下:

代码语言:javascript
复制
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import math
import matplotlib.pyplot as plt
import numpy as np
from celluloid import Camera


class Vehicle:
    def __init__(self,
                 x=0.0,
                 y=0.0,
                 yaw=0.0,
                 v=0.0,
                 dt=0.1,
                 l=3.0):
        self.steer = 0
        self.x = x
        self.y = y
        self.yaw = yaw
        self.v = v
        self.dt = dt
        self.L = l  # 轴距
        self.x_front = x + l * math.cos(yaw)
        self.y_front = y + l * math.sin(yaw)

    def update(self, a, delta, max_steer=np.pi):
        delta = np.clip(delta, -max_steer, max_steer)
        self.steer = delta

        self.x = self.x + self.v * math.cos(self.yaw) * self.dt
        self.y = self.y + self.v * math.sin(self.yaw) * self.dt
        self.yaw = self.yaw + self.v / self.L * math.tan(delta) * self.dt

        self.v = self.v + a * self.dt
        self.x_front = self.x + self.L * math.cos(self.yaw)
        self.y_front = self.y + self.L * math.sin(self.yaw)


class VehicleInfo:
    # Vehicle parameter
    L = 3.0  #轴距
    W = 2.0  #宽度
    LF = 3.8  #后轴中心到车头距离
    LB = 0.8  #后轴中心到车尾距离
    MAX_STEER = 0.6  # 最大前轮转角
    TR = 0.5  # 轮子半径
    TW = 0.5  # 轮子宽度
    WD = W  #轮距
    LENGTH = LB + LF  # 车辆长度

def draw_trailer(x, y, yaw, steer, ax, vehicle_info=VehicleInfo, color='black'):
    vehicle_outline = np.array(
        [[-vehicle_info.LB, vehicle_info.LF, vehicle_info.LF, -vehicle_info.LB, -vehicle_info.LB],
         [vehicle_info.W / 2, vehicle_info.W / 2, -vehicle_info.W / 2, -vehicle_info.W / 2, vehicle_info.W / 2]])

    wheel = np.array([[-vehicle_info.TR, vehicle_info.TR, vehicle_info.TR, -vehicle_info.TR, -vehicle_info.TR],
                      [vehicle_info.TW / 2, vehicle_info.TW / 2, -vehicle_info.TW / 2, -vehicle_info.TW / 2, vehicle_info.TW / 2]])

    rr_wheel = wheel.copy() #右后轮
    rl_wheel = wheel.copy() #左后轮
    fr_wheel = wheel.copy() #右前轮
    fl_wheel = wheel.copy() #左前轮
    rr_wheel[1,:] += vehicle_info.WD/2
    rl_wheel[1,:] -= vehicle_info.WD/2

    #方向盘旋转
    rot1 = np.array([[np.cos(steer), -np.sin(steer)],
                     [np.sin(steer), np.cos(steer)]])
    #yaw旋转矩阵
    rot2 = np.array([[np.cos(yaw), -np.sin(yaw)],
                     [np.sin(yaw), np.cos(yaw)]])
    fr_wheel = np.dot(rot1, fr_wheel)
    fl_wheel = np.dot(rot1, fl_wheel)
    fr_wheel += np.array([[vehicle_info.L], [-vehicle_info.WD / 2]])
    fl_wheel += np.array([[vehicle_info.L], [vehicle_info.WD / 2]])

    fr_wheel = np.dot(rot2, fr_wheel)
    fr_wheel[0, :] += x
    fr_wheel[1, :] += y
    fl_wheel = np.dot(rot2, fl_wheel)
    fl_wheel[0, :] += x
    fl_wheel[1, :] += y
    rr_wheel = np.dot(rot2, rr_wheel)
    rr_wheel[0, :] += x
    rr_wheel[1, :] += y
    rl_wheel = np.dot(rot2, rl_wheel)
    rl_wheel[0, :] += x
    rl_wheel[1, :] += y
    vehicle_outline = np.dot(rot2, vehicle_outline)
    vehicle_outline[0, :] += x
    vehicle_outline[1, :] += y

    ax.plot(fr_wheel[0, :], fr_wheel[1, :], color)
    ax.plot(rr_wheel[0, :], rr_wheel[1, :], color)
    ax.plot(fl_wheel[0, :], fl_wheel[1, :], color)
    ax.plot(rl_wheel[0, :], rl_wheel[1, :], color)

    ax.plot(vehicle_outline[0, :], vehicle_outline[1, :], color)
    # ax.axis('equal')



if __name__ == "__main__":

    vehicle = Vehicle(x=0.0,
                      y=0.0,
                      yaw=0,
                      v=0.0,
                      dt=0.1,
                      l=VehicleInfo.L)
    vehicle.v = 1
    trajectory_x = []
    trajectory_y = []
    fig = plt.figure()
    # 保存动图用
    # camera = Camera(fig)
    for i in range(600):
        plt.cla()
        plt.gca().set_aspect('equal', adjustable='box')
        vehicle.update(0, np.pi / 10)
        draw_trailer(vehicle.x, vehicle.y, vehicle.yaw, vehicle.steer, plt)
        trajectory_x.append(vehicle.x)
        trajectory_y.append(vehicle.y)
        plt.plot(trajectory_x, trajectory_y, 'blue')
        plt.xlim(-12, 12)
        plt.ylim(-2.5, 21)
        plt.pause(0.001)
    #     camera.snap()
    # animation = camera.animate(interval=5)
    # animation.save('trajectory.gif')

运行结果如下:

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2024-01-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 iDoitnow 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.运动学方程
  • 2.模型实现
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档