前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >PID横向控制和仿真实现

PID横向控制和仿真实现

作者头像
艰默
发布2024-01-11 16:00:25
1950
发布2024-01-11 16:00:25
举报
文章被收录于专栏:iDoitnowiDoitnow

1. PID介绍

PID是一种常见的控制算法,全称为Proportional-Integral-Derivative,即比例-积分-微分控制器。PID控制器是一种线性控制器,它将设定值与实际值进行比较,根据误差的大小,控制器会相应地调整系统的比例、积分和微分系数,以减小误差。

PID控制器的基本公式为:

u(t) = K_p * e(t) + K_i * \int^{t}_{0}{e(\tau)} d\tau + K_d *\frac{d}{dt} e(t) \tag{1}

其中,

u(t)

是控制器的输出,

e(t)

是误差信号(设定值与实际值之差),

K_p

K_i

K_d

是控制器的比例、积分和微分系数。

PID控制器在工程、科学和工业等领域中有着广泛的应用。例如,在汽车定速巡航系统、空调系统、工业自动化生产线等系统中都可以看到PID控制器的身影。此外,PID控制器还广泛应用于机器人控制、化工生产、航天器控制等领域。

将公式(1)转换为离散形式,则有

u(n) = K_p * e(n) + K_i * T*\sum^{n}_{i=0}{e(i)} + K_d *\frac{e(n)-e(n-1)}{T} \tag{2}

其中

T

为采样周期,由此公式可以得到PID代码的实现如下

代码语言:javascript
复制
#PID.py

class PIDController:
    def __init__(self, Kp, Ki, Kd):
        self.Kp = Kp
        self.Ki = Ki
        self.Kd = Kd
        self.previous_error = 0
        self.integral = 0


    def cal_output(self, error, dt):
        derivative = error - self.previous_error
        u = self.Kp * error + self.Ki * self.integral * dt + self.Kd * derivative / dt
        self.integral += error
        self.previous_error = error
        return u

2. PID横向控制原理

在自动驾驶横向控制中,主要通过控制方向盘的角度来控制车辆的横向距离误差,因此我们可以通过横向距离误差

e_y

来作为PID的输入,输出可以作为方向盘转角

\delta_f

,结合之前我们的车辆运动学模型(这里我们假设方向盘转角与前轮转角比是1),横向误差计算的几何结构如下图所示:

图中

P

:当前车辆的目标点车

l_d

:车辆后轴中心点

A

到P的距离

\theta

l_d

与车轴的夹角

\varphi

:车辆的航向角

e_y

:横向偏差

A

P

的坐标可以计算得

\beta = arctan\frac{y_1-y_0}{x_1-x_0} \tag{3}

由图中的几何关系,我们可以得到

e_y = l_d sin\theta =l_d sin(\beta - \varphi)\tag{4}

其中

\varphi

为车辆的航向角yaw,其实现方法详见bicycle_model.py

3. 算法和仿真实现

bicycle_model.py

代码语言:javascript
复制
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import math
import matplotlib.pyplot as plt
import numpy as np
from celluloid import Camera


class Vehicle:
    def __init__(self,
                 x=0.0,
                 y=0.0,
                 yaw=0.0,
                 v=0.0,
                 dt=0.1,
                 l=3.0):
        self.steer = 0
        self.x = x
        self.y = y
        self.yaw = yaw
        self.v = v
        self.dt = dt
        self.L = l  # 轴距
        self.x_front = x + l * math.cos(yaw)
        self.y_front = y + l * math.sin(yaw)

    def update(self, a, delta, max_steer=np.pi):
        delta = np.clip(delta, -max_steer, max_steer)
        self.steer = delta

        self.x = self.x + self.v * math.cos(self.yaw) * self.dt
        self.y = self.y + self.v * math.sin(self.yaw) * self.dt
        self.yaw = self.yaw + self.v / self.L * math.tan(delta) * self.dt

        self.v = self.v + a * self.dt
        self.x_front = self.x + self.L * math.cos(self.yaw)
        self.y_front = self.y + self.L * math.sin(self.yaw)


class VehicleInfo:
    # Vehicle parameter
    L = 3.0  #轴距
    W = 2.0  #宽度
    LF = 3.8  #后轴中心到车头距离
    LB = 0.8  #后轴中心到车尾距离
    MAX_STEER = 0.6  # 最大前轮转角
    TR = 0.5  # 轮子半径
    TW = 0.5  # 轮子宽度
    WD = W  #轮距
    LENGTH = LB + LF  # 车辆长度

def draw_trailer(x, y, yaw, steer, ax, vehicle_info=VehicleInfo, color='black'):
    vehicle_outline = np.array(
        [[-vehicle_info.LB, vehicle_info.LF, vehicle_info.LF, -vehicle_info.LB, -vehicle_info.LB],
         [vehicle_info.W / 2, vehicle_info.W / 2, -vehicle_info.W / 2, -vehicle_info.W / 2, vehicle_info.W / 2]])

    wheel = np.array([[-vehicle_info.TR, vehicle_info.TR, vehicle_info.TR, -vehicle_info.TR, -vehicle_info.TR],
                      [vehicle_info.TW / 2, vehicle_info.TW / 2, -vehicle_info.TW / 2, -vehicle_info.TW / 2, vehicle_info.TW / 2]])

    rr_wheel = wheel.copy() #右后轮
    rl_wheel = wheel.copy() #左后轮
    fr_wheel = wheel.copy() #右前轮
    fl_wheel = wheel.copy() #左前轮
    rr_wheel[1,:] += vehicle_info.WD/2
    rl_wheel[1,:] -= vehicle_info.WD/2

    #方向盘旋转
    rot1 = np.array([[np.cos(steer), -np.sin(steer)],
                     [np.sin(steer), np.cos(steer)]])
    #yaw旋转矩阵
    rot2 = np.array([[np.cos(yaw), -np.sin(yaw)],
                     [np.sin(yaw), np.cos(yaw)]])
    fr_wheel = np.dot(rot1, fr_wheel)
    fl_wheel = np.dot(rot1, fl_wheel)
    fr_wheel += np.array([[vehicle_info.L], [-vehicle_info.WD / 2]])
    fl_wheel += np.array([[vehicle_info.L], [vehicle_info.WD / 2]])

    fr_wheel = np.dot(rot2, fr_wheel)
    fr_wheel[0, :] += x
    fr_wheel[1, :] += y
    fl_wheel = np.dot(rot2, fl_wheel)
    fl_wheel[0, :] += x
    fl_wheel[1, :] += y
    rr_wheel = np.dot(rot2, rr_wheel)
    rr_wheel[0, :] += x
    rr_wheel[1, :] += y
    rl_wheel = np.dot(rot2, rl_wheel)
    rl_wheel[0, :] += x
    rl_wheel[1, :] += y
    vehicle_outline = np.dot(rot2, vehicle_outline)
    vehicle_outline[0, :] += x
    vehicle_outline[1, :] += y

    ax.plot(fr_wheel[0, :], fr_wheel[1, :], color)
    ax.plot(rr_wheel[0, :], rr_wheel[1, :], color)
    ax.plot(fl_wheel[0, :], fl_wheel[1, :], color)
    ax.plot(rl_wheel[0, :], rl_wheel[1, :], color)

    ax.plot(vehicle_outline[0, :], vehicle_outline[1, :], color)
    # ax.axis('equal')



if __name__ == "__main__":

    vehicle = Vehicle(x=0.0,
                      y=0.0,
                      yaw=0,
                      v=0.0,
                      dt=0.1,
                      l=VehicleInfo.L)
    vehicle.v = 1
    trajectory_x = []
    trajectory_y = []
    fig = plt.figure()
    # 保存动图用
    # camera = Camera(fig)
    for i in range(600):
        plt.cla()
        plt.gca().set_aspect('equal', adjustable='box')
        vehicle.update(0, np.pi / 10)
        draw_trailer(vehicle.x, vehicle.y, vehicle.yaw, vehicle.steer, plt)
        trajectory_x.append(vehicle.x)
        trajectory_y.append(vehicle.y)
        plt.plot(trajectory_x, trajectory_y, 'blue')
        plt.xlim(-12, 12)
        plt.ylim(-2.5, 21)
        plt.pause(0.001)
    #     camera.snap()
    # animation = camera.animate(interval=5)
    # animation.save('trajectory.gif')

main.py

代码语言:javascript
复制
from scipy.spatial import KDTree
from bicycle_model import Vehicle, VehicleInfo, draw_trailer
from PID import PIDController
import numpy as np
import matplotlib.pyplot as plt
import math
import imageio

MAX_SIMULATION_TIME = 200.0  # 程序最大运行时间200*dt
PID = PIDController(2, 0.001, 3)


def NormalizeAngle(angle):
    a = math.fmod(angle + np.pi, 2 * np.pi)
    if a < 0.0:
        a += (2.0 * np.pi)
    return a - np.pi


def main():
    # 设置跟踪轨迹
    ref_path = np.zeros((1000, 2))
    ref_path[:, 0] = np.linspace(0, 50, 1000)  # x坐标
    ref_path[:, 1] = 10 * np.sin(ref_path[:, 0] / 20.0)  # y坐标
    ref_tree = KDTree(ref_path)
    # 假设车辆初始位置为(0,0),航向角yaw=0.0,速度为2m/s,时间周期dt为0.1秒
    vehicle = Vehicle(x=0.0,
                      y=0.0,
                      yaw=np.pi/2,
                      v=2.0,
                      dt=0.1,
                      l=VehicleInfo.L)

    time = 0.0  # 初始时间

    # 记录车辆轨迹
    trajectory_x = []
    trajectory_y = []
    lat_err = []  # 记录横向误差

    i = 0
    image_list = []  # 存储图片
    plt.figure(1)

    last_idx = ref_path.shape[0] - 1  # 跟踪轨迹的最后一个点的索引
    old_idx = 0  # 记录上一次的索引点
    target_ind = 0  # 第一个目标点的索引
    while MAX_SIMULATION_TIME >= time and last_idx > target_ind:
        time += vehicle.dt  # 累加一次时间周期
        vehicle_positon = np.zeros(2)
        vehicle_positon[0] = vehicle.x
        vehicle_positon[1] = vehicle.y
        distance, target_ind = ref_tree.query(vehicle_positon)  # 在跟踪轨迹上查找离车辆最近的点
        if old_idx > target_ind:
            print("ERROR: Find the point behind the vehicle.")
            target_ind = old_idx + 1  # 查找到车辆后面的点,将目标点索引置为上一次的索引点idx+1
        old_idx = target_ind  # 记录本次索引点idx
        alpha = math.atan2(
            ref_path[target_ind, 1] - vehicle_positon[1], ref_path[target_ind, 0] - vehicle_positon[0])
        l_d = np.linalg.norm(ref_path[target_ind] - vehicle_positon)  # 目标点与车定位点距离l_d

        theta_e = NormalizeAngle(alpha - vehicle.yaw)
        e_y = l_d * math.sin(theta_e)  # 计算实际误差,0为目标距离
        lat_err.append(e_y)
        delta_f = PID.cal_output(e_y, vehicle.dt)

        vehicle.update(0.0, delta_f, np.pi / 10)  # 由于假设纵向匀速运动,所以加速度a=0.0
        trajectory_x.append(vehicle.x)
        trajectory_y.append(vehicle.y)

        # 显示动图
        plt.cla()
        plt.plot(ref_path[:, 0], ref_path[:, 1], '-.b', linewidth=1.0)
        draw_trailer(vehicle.x, vehicle.y, vehicle.yaw, vehicle.steer, plt)

        plt.plot(trajectory_x, trajectory_y, "-r", label="trajectory")
        plt.plot(ref_path[target_ind, 0], ref_path[target_ind, 1], "go", label="target")
        plt.axis("equal")
        plt.grid(True)
        plt.pause(0.001)
        plt.savefig("temp.png")
        i += 1
        if (i % 50) > 0:
            image_list.append(imageio.imread("temp.png"))

    imageio.mimsave("display.gif", image_list, duration=0.1)

    plt.figure(2)
    plt.subplot(2, 1, 1)
    plt.plot(ref_path[:, 0], ref_path[:, 1], '-.b', linewidth=1.0)
    plt.plot(trajectory_x, trajectory_y, 'r')
    plt.title("actual tracking effect")

    plt.subplot(2, 1, 2)
    plt.plot(lat_err)
    plt.title("lateral error")
    plt.show()


if __name__ == '__main__':
    main()

运行效果如下

跟踪效果和控制误差

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2024-01-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 iDoitnow 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. PID介绍
  • 2. PID横向控制原理
  • 3. 算法和仿真实现
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档