好事发生
这里推荐一篇实用的文章:《无代码探索AI大模型:腾讯云函数计算的卓越实践》
链接:https://cloud.tencent.com/developer/article/2475520
本文介绍了腾讯云函数计算的卓越实践。在数字化转型的浪潮中,人工智能(AI)技术已经成为企业提升竞争力的关键。然而,对于许多业务人员来说,技术门槛高、开发周期长等问题限制了他们快速探索和应用AI大模型的能力。
而腾讯云函数计算是一种事件驱动的全托管Serverless计算服务。用户无需管理服务器等基础设施,只需编写代码并上传,函数计算便会自动完成代码的部署、运行、扩容等工作。
下面开始今天的主题
从今年年初,OpenAI
发布的ChatGPT
以摧枯拉朽之势席卷全球。3月15日 OpenAI
发布多模态大模型GPT-4
,其不仅在语言处理能力上显著提高,还具备对图像的理解和分析能力。 GPT-4
商业化进程加快,开放API的同时还发布了在6个不同商业场景的应用落地。随后微软发布了震撼的微软365 Copilot
, 极大提升office的生产力和交互方式。随着技术的快速进步,大模型极大地解放了生产力,其广阔的应用场景及市场价值推动着其商业化的快速发展,在文字创造、人机交互、教育、影音、零售 等多场景已经有很多落地应用。
从ChatGPT
到OpenAI
最近提出的GPT-4
,GPT
模型的迅猛发展表明,AI正在向着“类人化”方向迅速发展。而经过GPT-4
具备深度阅读和识图能力,能够出色地通过专业考试并完成复杂指令,向人类引以为傲的“创造力”发起挑战。
讲到多模态大语言模型的优势,一般首先要提到这类模型的涌现能力和思维链。这两者是大语言模型不断接近人类的关键特征。
(Emergent Abilities)
:指模型具有从原始训练数据中自动学习并发现新的、更高层次的特征和模式的能力。涌现能力基于深度学习模型的分层结构和权重学习机制而实现,涌现出来的能力可以是基于文本的,也可以是多模态的。(Chain of Thought)
:大语言模型涌现出来的核心能力之一。其实之所以现在各类GPT研究火爆,也与模型训练出的思维链可进入产品应用有密切关系。思维链形成机制可以解释为模型通过学习大量的语言数据来构建一个关于语言结构和意义的内在表示,通过一系列中间自然语言推理步骤来完成最终输出。对于此,OpenAI
曾在GPT4
技术报告中提到他们在一系列不同的基准上测试了GPT-4
。下表是实验结果。
可以看到,测试中包括了为人类设计的各种模拟考试(如词汇、写作、历史、数学、法律、代码),考试结果显示其能够处理文本、图像两种模态的输入信息, 单次处理文本量是ChatGPT
的8倍,表现大大优于目前最好的语言模型,这意味着GPT-4
不仅在学术层面上实现了模型优化与突破,同时也展现出了成为部分领域专家的能力。
随着技术的迅猛发展,大模型人工智能(AI)在众多领域中已经展现了其优越的能力和潜力。然而,与此同时,大模型AI也已经对算法工程师工作产生了相当的威胁性。
由GitHub
开发的AI辅助编程工具GitHub Copilot
,使用了一种通用预训练语言OpenAI Codex
技术,其可以根据用户提供的代码输入和上下文,利用机器学习技术和大量的开源代码库进行训练,生成Python
、JavaScript
、TypeScript
、Ruby
、Go
和其他语言的代码片段,帮助开发人员提高效率,并通过GitHub Codespaces
集成到了GitHub
编辑器中,使得开发人员可以轻松地使用它来编码。
此外,大模型AI的出现也给算法工程师带来了一定的职业风险。随着大模型AI在多个领域的应用不断扩大,许多传统的工作岗位可能会被取代或转变。一些简单重复性的任务,特别是那些只需要基本的模式匹配和分类的工作,可能会被大模型AI自动化替代。这将迫使算法工程师不断转型和学习新的技能,以适应这一变化的职业环境。
之后丁凯博士讲到在大模型时代下,作为一名算法工程师该何去何从的问题。他提到,尽管大模型AI对算法工程师带来了诸多挑战和威胁,但我们不能忽视算法工程师的价值和重要性。
虽然大模型AI可以通过自主学习提供很多有效的解决方案,但算法工程师的专业知识和创造力仍然不可替代的。在大模型时代,虽然算法模型的开发变得越来越自动化,但算法知识和能力的重要性并没有降低。相反,正是由于这种发展,使得算法知识和能力可以在更广泛的领域发挥作用。
在大模型时代下,算法工程师需要整合和学习的内容与专业,学习把大模型融入到自己的学习和工作中。不断提高自身的技能和知识,以适应新的挑战和机遇,作为算法工程师,想要破局,掌握以下能力置为关键:
当前时代也是一个产品设计范式的变化,以往复杂的流程,变成只有一个对话框。比如,售前和市场团队负责解释和宣传算法产品,才能更好地向客户解释产品的功能和优势,扩大产品的影响力。数据工程师在收集和处理数据,保证模型训练和优化方面也扮演着重要角色等等。
而算法专业也拓展了一些更多的周边职业,如AI绘图工程师、AIGC工程师、数据挖掘工程师,目前已经有国外提示工程师岗位,开到了33万美元,即年薪可以达到两百万人民币以上。提示工程师就是为客户或企业基于复杂的任务需求和示例需求,提供标准化提示方案,主要负责深入了解机器学习和人工智能领域的最新理论和方法,开发和优化复杂模型的训练和推理过程。
总的来说,大模型的出现并没有使得算法专业的就业方向变得单一,反而由于其广泛的应用,产生了更多周边的职业机会。这需要我们站在更广阔的角度去思考,积极拓宽我们的知识领域,才能在这个时代找到自己的价值。而作为一名算法工程师,如何适应大模型时代的变革,他提到以下几点来适应大模型时代的变革:
总之,作为一名算法工程师,在大模型时代的变革中,需要加强与其他团队的协作、深入理解业务场景需求、关注算法产品的用户体验以及学习工程化和生产力工具,以适应时代变革,不断提高自身的专业能力和价值。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。