在当今数字化时代,人工智能(AI)技术的快速发展为各行业带来了前所未有的机遇。其中,检索增强生成(RAG)技术作为一种结合了检索和生成的混合模型,已经在自然语言处理领域取得了显著的成果。本文将详细介绍如何利用Spring AI框架、DeepSeek大模型、嵌入模型以及Milvus向量数据库实现一个高效的RAG应用。通过这一实践,读者将能够构建一个能够处理复杂查询并生成高质量答案的智能系统。
检索增强生成(Retrieval-Augmented Generation,RAG)是一种结合了检索(Retrieval)和生成(Generation)的混合模型。它通过检索模块从大规模文档集合中提取与查询相关的文档片段,然后将这些片段作为上下文信息输入到生成模块中,从而生成更准确、更相关的答案。RAG技术在问答系统、文档摘要、内容推荐等领域具有广泛的应用前景。
整个RAG应用的架构可以分为以下几个主要部分:
在pom.xml
文件中添加以下依赖:
<dependencies>
<!-- Spring AI -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai</artifactId>
<version>1.0.0</version>
</dependency>
<!-- Milvus Java SDK -->
<dependency>
<groupId>io.milvus</groupId>
<artifactId>milvus-sdk-java</artifactId>
<version>2.0.0</version>
</dependency>
<!-- DeepSeek Java SDK -->
<dependency>
<groupId>org.springframework.ai.deepseek</groupId>
<artifactId>deepseek-java-sdk</artifactId>
<version>1.0.0</version>
</dependency>
</dependencies>
在Spring Boot项目中,创建一个配置类来连接Milvus数据库:
import io.milvus.client.*;
@Configuration
public class MilvusConfig {
@Bean
public MilvusClient milvusClient() {
ConnectParam connectParam = new ConnectParam.Builder().withHost("localhost").withPort(19530).build();
MilvusClient client = new MilvusGrpcClient.Builder().build();
Response res = client.connect(connectParam);
if (res.ok()) {
System.out.println("Connected to Milvus server successfully.");
} else {
System.out.println("Failed to connect to Milvus server.");
}
return client;
}
}
在Milvus中创建一个集合用于存储文档的向量表示,并创建索引以加速检索:
import io.milvus.client.*;
@Service
public class MilvusService {
@Autowired
private MilvusClient milvusClient;
public void createCollection(String collectionName) {
CollectionSchema collectionSchema = new CollectionSchema.Builder()
.withCollectionName(collectionName)
.withDescription("Collection for RAG application")
.addField(
new FieldSchema.Builder()
.withName("id")
.withDataType(DataType.INT64)
.withIsPrimaryKey(true)
.withAutoID(true)
.build()
)
.addField(
new FieldSchema.Builder()
.withName("vector")
.withDataType(DataType.FLOAT_VECTOR)
.withDimension(768) // Assuming BERT embeddings
.build()
)
.build();
Response res = milvusClient.createCollection(collectionSchema);
if (res.ok()) {
System.out.println("Collection created successfully.");
} else {
System.out.println("Failed to create collection.");
}
}
public void createIndex(String collectionName) {
IndexParam indexParam = new IndexParam.Builder()
.withCollectionName(collectionName)
.withFieldName("vector")
.withIndexType(IndexType.IVF_FLAT)
.withMetricType(MetricType.L2)
.withParams(new IndexParam.IndexParams.Builder()
.withNlist(128)
.build())
.build();
Response res = milvusClient.createIndex(indexParam);
if (res.ok()) {
System.out.println("Index created successfully.");
} else {
System.out.println("Failed to create index.");
}
}
}
将文档数据插入Milvus数据库中。假设我们已经使用嵌入模型将文档转换为向量表示:
@Service
public class MilvusService {
@Autowired
private MilvusClient milvusClient;
public void insertData(String collectionName, List<float[]> vectors) {
List<Long> ids = new ArrayList<>();
List<List<Float>> vectorList = new ArrayList<>();
for (float[] vector : vectors) {
ids.add(null); // Auto-generated ID
vectorList.add(Arrays.stream(vector).boxed().collect(Collectors.toList()));
}
InsertParam insertParam = new InsertParam.Builder()
.withCollectionName(collectionName)
.withFields(
new FieldParam.Builder()
.withName("vector")
.withValues(vectorList)
.build()
)
.build();
Response res = milvusClient.insert(insertParam);
if (res.ok()) {
System.out.println("Data inserted successfully.");
} else {
System.out.println("Failed to insert data.");
}
}
}
在Spring Boot项目中,创建一个配置类来配置DeepSeek客户端:
import org.springframework.ai.client.AiClient;
import org.springframework.ai.client.DefaultAiClient;
import org.springframework.ai.deepseek.client.DeepSeekAiClient;
import org.springframework.ai.deepseek.client.DeepSeekAiClientConfig;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class DeepSeekConfig {
@Bean
public AiClient deepSeekAiClient() {
String apiKey = "your-deepseek-api-key"; // Replace with your actual API key
DeepSeekAiClientConfig config = new DeepSeekAiClientConfig(apiKey);
return new DeepSeekAiClient(config);
}
}
创建一个服务类来封装与DeepSeek模型的交互逻辑:
import org.springframework.ai.client.AiClient;
import org.springframework.ai.client.AiResponse;
import org.springframework.ai.prompt.Prompt;
import org.springframework.ai.prompt.messages.UserMessage;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public
class DeepSeekService {
@Autowired
private AiClient deepSeekAiClient;
public String generateAnswer(String query, List<String> context) {
Prompt prompt = new Prompt.Builder()
.withMessage(new UserMessage(query))
.withContext(context)
.build();
AiResponse response = deepSeekAiClient.generate(prompt);
return response.getGeneratedText();
}
}
创建一个服务类来实现从Milvus数据库中检索相关文档片段的逻辑:
import io.milvus.client.*;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.util.ArrayList;
import java.util.List;
@Service
public class RetrievalService {
@Autowired
private MilvusClient milvusClient;
public List<String> retrieveDocuments(String collectionName, float[] queryVector, int topK) {
List<Long> ids = new ArrayList<>();
List<List<Float>> vectorList = new ArrayList<>();
vectorList.add(Arrays.stream(queryVector).boxed().collect(Collectors.toList()));
SearchParam searchParam = new SearchParam.Builder()
.withCollectionName(collectionName)
.withDsl(
new SearchParam.Dsl()
.withMetricType(MetricType.L2)
.withParams(new SearchParam.Dsl.Params.Builder()
.withTopK(topK)
.build())
.withVectors(vectorList)
.build()
)
.build();
Response res = milvusClient.search(searchParam);
if (res.ok()) {
List<List<Float>> resultVectors = res.getVectorIdsList().get(0);
List<String> retrievedDocuments = new ArrayList<>();
for (List<Float> vector : resultVectors) {
// Convert vector back to document (assuming you have a mapping)
retrievedDocuments.add("Document corresponding to vector");
}
return retrievedDocuments;
} else {
throw new RuntimeException("Failed to retrieve documents.");
}
}
}
将检索到的文档片段作为上下文信息输入到DeepSeek模型中,生成最终的答案:
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public class RAGService {
@Autowired
private RetrievalService retrievalService;
@Autowired
private DeepSeekService deepSeekService;
public String generateAnswer(String query, String collectionName, int topK) {
// Convert query to vector using an embedding model (e.g., BERT)
float[] queryVector = convertQueryToVector(query);
// Retrieve relevant documents from Milvus
List<String> retrievedDocuments = retrievalService.retrieveDocuments(collectionName, queryVector, topK);
// Generate answer using DeepSeek model
String answer = deepSeekService.generateAnswer(query, retrievedDocuments);
return answer;
}
private float[] convertQueryToVector(String query) {
// Implement your embedding model logic here
// For example, using BERT to convert query to vector
return new float[]{0.1f, 0.2f, 0.3f}; // Placeholder vector
}
}
使用HTML和JavaScript构建一个简单的前端界面,用户可以在其中输入查询问题并查看生成的答案:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>RAG Application</title>
</head>
<body>
<h1>RAG Application</h1>
<form id="queryForm">
<label for="query">Enter your query:</label>
<input type="text" id="query" name="query" required>
<button type="submit">Submit</button>
</form>
<div id="answer"></div>
<script>
document.getElementById('queryForm').addEventListener('submit', function(event) {
event.preventDefault();
const query = document.getElementById('query').value;
fetch('/generate-answer', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({ query })
})
.then(response => response.json())
.then(data => {
document.getElementById('answer').innerText = data.answer;
});
});
</script>
</body>
</html>
在Spring Boot项目中,创建一个控制器类来处理前端的查询请求:
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;
@RestController
@RequestMapping("/api")
public class RAGController {
@Autowired
private RAGService ragService;
@PostMapping("/generate-answer")
public Map<String, String> generateAnswer(@RequestBody Map<String, String> request) {
String query = request.get("query");
String answer = ragService.generateAnswer(query, "your_collection_name", 5); // Adjust collection name and topK as needed
return Map.of("answer", answer);
}
}
对整个系统进行测试,确保各个模块能够正常工作。测试内容包括:
根据测试结果,对系统进行优化。优化方向包括:
本文详细介绍了如何利用Spring AI框架、DeepSeek大模型、嵌入模型和Milvus向量数据库实现一个检索增强生成(RAG)应用。通过这一实践,我们构建了一个能够处理复杂查询并生成高质量答案的智能系统。未来,我们可以进一步探索以下方向:
通过不断探索和优化,RAG技术将在更多领域发挥重要作用,为用户提供更加智能和便捷的服务。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。