首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Python实现信号小波分解与重构

Python实现信号小波分解与重构

原创
作者头像
用户4006703
发布2025-08-06 22:36:32
发布2025-08-06 22:36:32
20900
代码可运行
举报
运行总次数:0
代码可运行

使用Python中的PyWavelets库实现信号小波分解和重构

步骤说明

  1. 导入库:使用pywt进行小波变换,numpy处理数据,matplotlib绘图
  2. 生成示例信号:创建包含多个频率成分的合成信号
  3. 小波分解:使用wavedec进行多级分解
  4. 系数处理(可选):可在此步骤修改系数(如去噪、压缩)
  5. 信号重构:使用waverec重构信号
  6. 结果可视化:比较原始信号与重构信号

完整代码

代码语言:javascript
代码运行次数:0
运行
复制
import pywt
import numpy as np
import matplotlib.pyplot as plt
​
# 1. 生成示例信号
t = np.linspace(0, 1, 1000, endpoint=False)
signal = np.sin(2 * np.pi * 10 * t) + 0.5 * np.sin(2 * np.pi * 50 * t)
signal += 0.2 * np.random.randn(len(t))  # 添加噪声
​
# 2. 小波分解参数设置
wavelet = 'db4'  # 使用Daubechies4小波
level = 4        # 分解层数
​
# 3. 执行小波分解
coeffs = pywt.wavedec(signal, wavelet, level=level)
cA4, cD4, cD3, cD2, cD1 = coeffs  # 各级系数
​
print(f"系数结构: {[c.shape for c in coeffs]}")
​
# 4. (可选) 系数处理 - 这里演示简单的阈值去噪
threshold = 0.5  # 阈值大小
coeffs_thresh = [coeffs[0]]  # 保留近似系数
for i in range(1, len(coeffs)):
    # 对细节系数应用软阈值
    coeffs_thresh.append(pywt.threshold(coeffs[i], threshold, mode='soft'))
​
# 5. 信号重构
reconstructed = pywt.waverec(coeffs_thresh, wavelet)
​
# 确保信号长度一致(小波变换可能导致边界扩展)
reconstructed = reconstructed[:len(signal)]
​
# 6. 结果可视化
plt.figure(figsize=(12, 10))
​
# 原始信号
plt.subplot(4, 1, 1)
plt.plot(t, signal)
plt.title("原始信号 (含噪声)")
plt.grid(True)
​
# 分解系数
plt.subplot(4, 1, 2)
for i, coeff in enumerate(coeffs_thresh):
    if i == 0:
        plt.plot(coeff, 'r', label=f'cA{level}')
    else:
        plt.plot(coeff, label=f'cD{level-i+1}')
plt.title("小波系数 (阈值处理后)")
plt.legend()
plt.grid(True)
​
# 重构信号
plt.subplot(4, 1, 3)
plt.plot(t, reconstructed)
plt.title("重构信号 (去噪后)")
plt.grid(True)
​
# 重构误差
plt.subplot(4, 1, 4)
plt.plot(t, signal - reconstructed, 'r')
plt.title("重构误差")
plt.grid(True)
​
plt.tight_layout()
plt.show()
​
# 计算重构误差
mse = np.mean((signal - reconstructed)**2)
print(f"均方误差 (MSE): {mse:.6f}")
print(f"最大绝对误差: {np.max(np.abs(signal - reconstructed)):.6f}")

关键参数说明

  1. 小波基选择
    • 'db4':Daubechies 4阶小波(常用)
    • 其他选项:'haar', 'sym5', 'coif3'等(根据信号特性选择)
  2. 分解层数
    • 通常选择使最低频分量有足够代表性的层数
    • 最大层数限制:level <= pywt.dwt_max_level(len(signal), wavelet)
  3. 阈值处理
    • soft阈值:T(x) = \text{sign}(x)(|x| - \text{threshold})
    • hard阈值:T(x) = x \cdot \mathbb{I}(|x| > \text{threshold})
    • 阈值选择方法:threshold = np.std(coeff) * np.sqrt(2*np.log(len(signal)))

输出结果

  1. 系数结构:显示各级系数的长度(随分解层级递减)
  2. 四部分可视化
    • 含噪声的原始信号
    • 阈值处理后的各级系数
    • 重构后的去噪信号
    • 重构误差曲线
  3. 误差指标
    • 均方误差(MSE)
    • 最大绝对误差

应用场景

  1. 信号去噪:通过阈值处理细节系数
  2. 特征提取:分析各级系数获取时频特征
  3. 数据压缩:保留重要系数,丢弃小系数
  4. 奇点检测:利用细节系数定位突变点

注意事项

  1. 边界效应:小波变换可能引入边界失真,可考虑: # 使用周期模式减少边界效应 coeffs = pywt.wavedec(signal, wavelet, level=level, mode='per')
  2. 系数长度:重构后需截取原信号长度
  3. 小波选择:不同小波适用于不同信号类型,需实验确定最优基

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 步骤说明
  • 完整代码
  • 关键参数说明
  • 输出结果
  • 应用场景
  • 注意事项
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档